疏水表面微結(jié)構(gòu)設(shè)計(jì)與微銑削加工技術(shù)研究
[Abstract]:Because of its self-cleaning, drag-reducing and anti-wear properties, hydrophobic surface brings great convenience to people's production and life, and creates great impetus for human development. The surface hydrophobicity of micro-structure, nano-structure and low surface energy materials can be obtained by the combination of multi-order structure and low surface energy material. With the study of micro-machining mechanism, the improvement of turning and milling precision, and the gradual reduction of milling tool size, it is possible to study the hydrophobicity of micro-size microstructure by micro-cutting method. Surface contact angle is an important technical index for characterizing hydrophobic properties. In order to study the effect of micro-structure on the contact angle of water droplets on its surface, based on Young equation, Wenzel equation and Cassie-Baxter equation, a two-dimensional contact angle prediction model based on minimum Gibbs free energy was established. The micro-structure was machined by micro-milling, and the influence of micro-structure size parameters on contact angle was investigated by combining theoretical analysis with cutting test and contact angle test. Firstly, based on the Young equation of smooth surface and the Cassie-Baxter equation of rough surface, the contact angle prediction model based on minimum Gibbs free energy in two-dimensional case is established. The prediction model is modified considering the influence of inclined wall on the gas-liquid contact line. The contact angle prediction model and its modification are used to study the influence of microstructure materials and size parameters on the contact angle and the hydrophobic microstructure design. The results show that the contact angle of hydrophobic substrate is higher than that of hydrophilic substrate. Increasing the width of the microstructure gap, reducing the width of the raised platform and decreasing the angle of the inclined wall of the microstructure are beneficial to the elevation of the contact angle. Secondly, four kinds of micro-structures are designed, which are straight-wall groove, square column array, oblique-wall groove and oblique-wall array. The micro-structure is machined by micro-milling method, and the contact angle of water droplets on the microstructure surface is measured. Finally, the effects of four types of microstructure, such as straight-wall grooves, square-column arrays, oblique-wall grooves and oblique-wall arrays, on the contact angle of water droplets on the surface of the droplets are studied by means of theoretical analysis and experiment. The results show that the micro-structure of groove and square column array can increase the contact angle of water droplets on its surface, and the contact angle increases with the increase of microstructure spacing, and decreases with the increase of the width of convex platform (square column). The contact angles of the droplets perpendicular to the grooves and parallel to the grooves are different and affect each other in the microstructure of the straight-walled grooves. Water droplets have a more stable contact angle on the straight-wall grooves and larger contact angles on the surface of the square-column array, and are closer to globules. Compared with the straight wall structure, the existence of oblique wall structure can increase the contact angle of water droplets on the microstructure surface, but increase the instability of water droplets on the microstructure surface. The water droplets are more likely to enter the microstructure inside the Wenzel state. In addition, the influence of microstructure size parameters on the contact angle is reduced due to the existence of inclined wall.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG54
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 麻沁甜;肖遠(yuǎn)龍;童敏曼;李正杰;陽(yáng)慶元;劉大歡;仲崇立;;熱力學(xué)和計(jì)算化學(xué)在納微結(jié)構(gòu)材料構(gòu)效關(guān)系研究與設(shè)計(jì)中的應(yīng)用[J];中國(guó)科學(xué):化學(xué);2014年06期
2 程永來(lái);用核化法制造毫微結(jié)構(gòu)[J];高技術(shù)通訊;1994年10期
3 任淮輝;李旭東;李俊琛;;顆粒增強(qiáng)復(fù)合材料微結(jié)構(gòu)的數(shù)值模擬與虛擬失效[J];機(jī)械工程學(xué)報(bào);2010年04期
4 ;[J];;年期
相關(guān)會(huì)議論文 前2條
1 孟永鋼;吳昊;郭占社;蘇才鈞;;硅微結(jié)構(gòu)材料的疲勞性能與摩擦學(xué)性能評(píng)價(jià)方法[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(上)[C];2007年
2 那仁滿都拉;額爾敦倉(cāng);韓元春;;微結(jié)構(gòu)固體中孤立波形成過(guò)程的數(shù)值模擬[A];力學(xué)與工程應(yīng)用[C];2012年
相關(guān)重要報(bào)紙文章 前3條
1 本報(bào)記者 張曄;微結(jié)構(gòu)世界里“看熱鬧”[N];科技日?qǐng)?bào);2005年
2 本報(bào)記者左常睿;探微析理 巧奪天工[N];科技日?qǐng)?bào);2002年
3 本報(bào)記者 趙亞輝;“微”中見(jiàn)大[N];人民日?qǐng)?bào);2006年
相關(guān)博士學(xué)位論文 前3條
1 苗鳳娟;硅微結(jié)構(gòu)材料的制備及應(yīng)用[D];華東師范大學(xué);2010年
2 王鐵強(qiáng);不對(duì)稱微結(jié)構(gòu)的構(gòu)筑及其各向異性性質(zhì)的研究[D];吉林大學(xué);2013年
3 康明;基于亞波長(zhǎng)金屬微結(jié)構(gòu)的光場(chǎng)調(diào)控[D];南開(kāi)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前4條
1 宋昊;疏水表面微結(jié)構(gòu)設(shè)計(jì)與微銑削加工技術(shù)研究[D];山東大學(xué);2015年
2 何雪梅;基于微結(jié)構(gòu)的熱輻射特性控制研究[D];南京理工大學(xué);2012年
3 龐小龍;二維微結(jié)構(gòu)表面浸潤(rùn)性研究[D];南京郵電大學(xué);2013年
4 魏小龍;二維光學(xué)微結(jié)構(gòu)光反射特性的研究及其在硅基太陽(yáng)能電池中的應(yīng)用[D];安徽大學(xué);2015年
,本文編號(hào):2470580
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2470580.html