高強高導(dǎo)Cu-Cr-Zr合金組織和性能的研究
[Abstract]:The high-strength and high-conductivity Cu-Cr-Zr alloy is widely used in integrated circuit lead frame, high-speed railway electrical contact line and aerospace and other fields. With the development of modern industrial technology, the requirement of high-strength and high-conductivity copper alloy is also higher and higher. It is necessary for us to develop new Cu-Cr-Zr alloy in time, and to study the cause and performance of the alloy. A trace rare-earth La and Y element are added on the basis of Cu-0.81Cr-0.12Zr alloy (mass percentage, the same below), the alloy ingot is prepared by adopting a vacuum induction melting method, the hot rolling is carried out after the homogenization annealing, and then the solid solution, the cold rolling and the aging treatment are carried out, The microstructure of the alloy in each process stage was analyzed by means of an optical microscope and a scanning electron microscope. The phase composition of the sample was analyzed by an X-ray diffractometer. The structure of the aging phase was analyzed by a high-resolution transmission electron microscope. The microhardness was measured by a digital-display hardness tester. The strength was measured by a universal mechanical testing machine and the conductivity was measured with a micro-ohm meter. The alloy thin strip specimens were prepared by means of the rapid solidification single-roll casting method, and the total supersaturated solid solution alloy was obtained, and the micro-hardness and the conductivity of the samples before and after the aging treatment were tested. In addition, a rod-like sample of Cu-0.81Cr alloy was prepared by liquid metal cooling and directional solidification, and the microstructure and mechanical and electrical properties of the alloy were investigated. The main conclusions are as follows: The phase composition of Cu-0.81Cr-0. 12Zr-0. 05La-0. 05Y ingot is not changed due to the addition of rare-earth, and the phases of Cu, Cr and Cu5Zr are all composed of Cu, Cr and Cu5Zr. Most of the Cr phases are in the form of Cr + Cu or in the grain boundary of Cu, and a small amount of Cr particles are distributed in the Cu matrix, and the Cu5Zr exists only at the Cu grain boundary. but the addition of rare earth elements can obviously refine the ingot structure. Cu-0.81Cr-0. 12Zr-0. 05La-0. 05Y ingot was annealed for 60 minutes at 1193 K temperature for 60 minutes, then cooled to room temperature for cold rolling at 1223 K temperature for 60 minutes, and the properties of different rolling-ratio cold-deformed alloys at different time after the series of temperature aging were investigated, and the cold deformation was found to be 60%. The microhardness of the samples treated with 773K aging treatment for 60 minutes was 186 HV and the conductivity was 81% IACS. The alloy is further subjected to cold deformation of 40%, then the alloy is aged for 30 minutes at 723K, the microhardness is increased to 203 HV, the conductivity is improved to 81.9% IACS, and the tensile strength and the elongation at this time are respectively 604 MPa and 8.5%. The precipitation of the precipitation phase and the recrystallization of the matrix Cu at 653K-698K and 743K-823K were carried out at a rate of 20K/ min by 60% cold-rolling of Cu-0.81Cr-0.12Zr-0.05La-0.05Y alloy at a rate of 20 K/ min. The microstrain of the cold-rolled Cu-0.81Cr-0.12Zr-0. 05La-0. 05Y alloy is higher than that of the pure copper, and the intensity of the (111) Cu diffraction peak in the XRD pattern decreases with the increase of the aging temperature, and (220) the intensity of the Cu diffraction peak is increasing. The Cu-0.81Cr-0.12Zr-0. 05La-0. 05Y alloy precipitates the Cu5Zr phase of the Cr-phase and the surface-centered cubic of the body-centered cubic in the aging process. In the best comprehensive performance, the partial precipitation phase is still in a co-lattice relationship with the matrix, in which the Nishiyama-Wassermann-bit directional relationship is presented between the Cr-out phase and the Cu matrix: (111) Cu// (110) Cr;[01 _ 1] Cu//[001] Cr;[2 _ 11] Cu//[1 _ 10] Cr. The fast-set Cu-0.81Cr-0.12Zr-0. 05La-0. 05Y alloy is a completely supersaturated solid solution, When the alloy is continuously heated at a rate of 20 K/ min, the heat release peak that reflects the desolvation and precipitation phase of the supersaturated solid solution starts at 655 K and ends at 688 K. The fast quenching strip has the best comprehensive performance after the time of the 773 K aging for 15 minutes: the microhardness reaches 215 HV and the conductivity is 70.6% IACS. The microstructure of the alloy after cold deformation of 60% is higher than 29HV, which shows that the hardening time is better than that of conventional solid-solution aging. The directionally solidified Cu-0.81Cr self-growing composite material is composed of a directionally arranged Cu-Cu branch (cell) crystal and a Cu + Cr eutectic reinforcement which is distributed on the grain boundary of the Cu-0. 81Cr self-growing composite material. Although the two phases in the eutectic structure are still non-oriented, the longitudinal distribution of the co-crystals along the primary Cu-Cu grain boundary in the directional solidification structure still significantly improves the strength, plasticity and electrical conductivity of the directional solidification alloy. the temperature gradient at the time of directional solidification is improved, the structure is refined, the continuity of the longitudinal direction of the sample is improved, and the mechanical and electrical conductivity of the sample can be improved. but the pulling speed is improved, the strength and the conductivity of the sample are firstly raised and then decreased, and the plasticity is firstly reduced.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TG146.11
【相似文獻】
相關(guān)期刊論文 前10條
1 方林;;土壤導(dǎo)電率的測定方法[J];資源開發(fā)與保護;1986年04期
2 Р.Петер;王秀華;;在多次壓縮和剪切條件下橡膠導(dǎo)電率的研究[J];橡膠譯叢;1989年01期
3 ;強度和導(dǎo)電率都高的新框架材料[J];唐山工程技術(shù)學(xué)院學(xué)報;1994年04期
4 趙荒;導(dǎo)電率如銅的塑料[J];塑料通訊;1994年04期
5 S.J.馬瑟斯;曹子純;;確定砂礫礦床中廢料與覆蓋巖厚度和范圍的地球物理法[J];國外采礦技術(shù)快報;1985年17期
6 吳克義;;稀土對圓鋁桿性能的影響[J];湖南有色金屬;1987年05期
7 黃崇祺;儲成著;丁關(guān)森;沈建華;;鋁導(dǎo)體的硼化處理[J];上海金屬.有色分冊;1987年03期
8 黃崇祺;儲成著;丁關(guān)森;沈建華;;鋁導(dǎo)體的硼化處理[J];上海金屬;1987年03期
9 В.И.Дырда,袁抗;橡膠制品導(dǎo)電率與損傷關(guān)系的研究[J];橡膠譯叢;1997年03期
10 成衛(wèi)兵;;熱處理制度對6063鋁合金導(dǎo)電管導(dǎo)電率及力學(xué)性能的影響[J];鋁加工;2012年05期
相關(guān)會議論文 前7條
1 賀江平;陳星運;舒遠杰;;納米石墨片/環(huán)氧樹脂高導(dǎo)電率復(fù)合材料的制備和性能[A];2010年全國高分子材料科學(xué)與工程研討會學(xué)術(shù)論文集(下冊)[C];2010年
2 劉勇;劉平;田保紅;任鳳章;;微量Ce對Cu-Cr-Zr合金性能影響[A];第三屆中國熱處理活動周暨第六次全國熱處理生產(chǎn)技術(shù)改造會議論文專輯[C];2005年
3 王慶華;;內(nèi)冷水處理及實際存在問題與對策[A];第四屆火電行業(yè)化學(xué)(環(huán)保)專業(yè)技術(shù)交流會論文集[C];2013年
4 田保紅;朱建娟;劉平;任鳳章;劉勇;賈淑果;;變形及熱處理后CuCr25觸頭材料的性能研究[A];第九次全國熱處理大會論文集(二)[C];2007年
5 羅振中;;鉬的應(yīng)用及其發(fā)展[A];第五屆海峽兩岸粉末冶金技術(shù)研討會論文集[C];2004年
6 卜銀龍;;時效處理對662合金帶材性能的影響[A];中國電子學(xué)會生產(chǎn)技術(shù)分會第五屆金屬材料及熱處理年會論文集(二)[C];1994年
7 卜銀龍;;時效處理對662合金帶材性能的影響[A];中國電子學(xué)會生產(chǎn)技術(shù)分會金屬材料及熱處理專業(yè)委員會北京學(xué)組第三屆年會論文集(下冊)[C];1993年
相關(guān)重要報紙文章 前2條
1 ;新型材料高導(dǎo)電率鈹青銅研制成功[N];中國有色金屬報;2003年
2 ;高導(dǎo)鈹青銅研制成功[N];中國有色金屬報;2003年
相關(guān)博士學(xué)位論文 前1條
1 潘振亞;高強高導(dǎo)Cu-Cr-Zr合金組織和性能的研究[D];上海交通大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 張顯娜;基于團簇模型的Cu-Ni-Sn系導(dǎo)電Cu合金成分設(shè)計與性能研究[D];大連理工大學(xué);2015年
2 劉建彬;點焊電極用Cu-Ni-Si-Cr-Zr合金性能研究[D];南昌航空大學(xué);2015年
3 王松偉;中等強度高導(dǎo)電率Al-Mg-Si合金制備工藝及組織性能研究[D];沈陽工業(yè)大學(xué);2016年
4 吳蕾;平面亞微米導(dǎo)電率精確測量及其在MEMS器件無損檢測中的應(yīng)用研究[D];浙江大學(xué);2011年
5 王帆;中強度高導(dǎo)電率Al-Mg-Si合金導(dǎo)線的研究[D];沈陽工業(yè)大學(xué);2015年
6 張龍洲;邊界上導(dǎo)電率的變化對磁流體自激發(fā)電現(xiàn)象中的alpha效應(yīng)的影響的研究[D];山東大學(xué);2014年
7 楊鋼;高導(dǎo)電率微合金電工圓鋁桿生產(chǎn)工藝開發(fā)研究[D];昆明理工大學(xué);2006年
8 陳蘭麗;高p型導(dǎo)電率氧化鋅的設(shè)計與計算[D];江西科技師范學(xué)院;2011年
9 郭望望;非真空熔鑄Cu-Cr-Zr合金組織性能研究[D];河南科技大學(xué);2011年
10 葉於龍;過量Mg、Si元素對6101鋁合金電工導(dǎo)線性能的影響及機制探究[D];中南大學(xué);2014年
,本文編號:2362247
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2362247.html