國產(chǎn)數(shù)控系統(tǒng)在五坐標(biāo)銑床技術(shù)改造上的應(yīng)用與研究
[Abstract]:After 2000, with the great support of the country to the development of aerospace industry and the increasingly fierce competition of manufacturing industry, the manufacture of aviation components has also entered the digital age with the rapid development of digital technology. Only by ensuring the low cost, high quality and high environmental protection of aviation components, can we maintain the advanced nature of aviation products, which requires more high-speed, more accurate and more reliable processing technology. However, the components of aeronautical industrial products often have the characteristics of high temperature resistance, high strength, difficult processing, many alloy materials and composite materials, many complex structural parts, high process requirements and high price. Efficiency and other aspects are not competent. The domestic numerical control machine tool for aircraft landing gear, engine and other titanium alloy parts processing and the domestic high grade numerical control system are still blank in our country. In this paper, the development trend of numerical control technology is first stated, the necessity and superiority of numerical control technical transformation are discussed, the main features and applicable scope of NC milling machine are introduced, the feasibility and design of reconstruction steps of NC machine tool are analyzed. Then, the control principle of the servo drive system of machine tool coordinate motor is studied, and the selection method of each motor of machine tool is analyzed and calculated. The NC transformation of FSP-120V 5-axis vertical NC machining center of Xifei Company is carried out by using Guangzhou NC system GSK25i. The debugging method of the system is explained, and the (PLC) program and tool library program of the programmable controller of machine tool are designed. The measurement and compensation of tool rotation center point control (RTCP) precision and machine tool positioning accuracy under five axis linkage are introduced. Finally, combined with practical engineering experience, the spindle and its supporting bearings of NC machine tool are designed in detail, and the strength and rigidity of the designed spindle are analyzed, and the static strength and stiffness characteristics of the spindle are checked.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TG547
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王增新;孫彩霞;李初曄;;AB雙擺角數(shù)控銑頭運(yùn)動誤差分析[J];航空制造技術(shù);2014年14期
2 王永紅;;舊數(shù)控機(jī)床改造的意義及其技術(shù)途徑[J];機(jī)械制造與自動化;2008年06期
3 羅永順,曾偉民,甄任賀;普通機(jī)床數(shù)控化改造設(shè)計中關(guān)鍵問題的研究[J];機(jī)床與液壓;2005年06期
4 王金生,姚春燕,彭偉;XK717數(shù)控銑床主軸系統(tǒng)的熱特性分析[J];機(jī)床與液壓;2005年04期
5 陳先鋒,舒志兵,趙英凱;基于PMSM伺服系統(tǒng)的數(shù)學(xué)模型及其性能分析[J];機(jī)械與電子;2005年01期
6 吳智恒,徐旋波;數(shù)控機(jī)床技術(shù)發(fā)展趨勢[J];機(jī)電工程技術(shù);2004年09期
7 王宏,于泳,徐殿國;永磁同步電動機(jī)位置伺服系統(tǒng)[J];中國電機(jī)工程學(xué)報;2004年07期
8 姜海燕,鄖建國;普通立式銑床的數(shù)控改造[J];現(xiàn)代制造工程;2004年04期
9 王建梅 ,黃慶學(xué) ,侯建亮 ,梁懷文;熱連軋機(jī)工作輥軸承座的熱應(yīng)力研究[J];軸承;2002年01期
10 楊皖蘇,嚴(yán)鴻和;我國數(shù)控產(chǎn)業(yè)發(fā)展政策研究[J];機(jī)械設(shè)計與制造工程;2001年01期
相關(guān)碩士學(xué)位論文 前5條
1 耿艷梅;數(shù)控機(jī)床刀庫即時通訊故障診斷系統(tǒng)設(shè)計[D];山東大學(xué);2010年
2 何明晉;基于FANUC系統(tǒng)的普通銑床6M612的數(shù)控化改造[D];西安科技大學(xué);2009年
3 韓純潔;蘇制AT-600B2車削中心數(shù)控改造的研究與應(yīng)用[D];西安電子科技大學(xué);2007年
4 滕士波;數(shù)控機(jī)床的改造及應(yīng)用[D];哈爾濱工程大學(xué);2006年
5 王超;數(shù)控機(jī)床驅(qū)動系統(tǒng)分析及步進(jìn)電機(jī)驅(qū)動系統(tǒng)設(shè)計[D];天津大學(xué);2004年
,本文編號:2339611
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2339611.html