鎳鈦鈮形狀記憶合金特性的試驗與本構(gòu)模型研究
[Abstract]:Shape memory alloys have been widely paid attention in recent decades due to its unique pseudoelasticity and shape memory effect. The NiTiNb shape memory alloy is an important member of the NiTi-based alloy, and undergoes a certain pre-deformation (about 16%) at a certain temperature (Ms + 30oC), so that a wide phase change hysteresis effect and a better shape memory effect can be obtained, and the connecting piece such as a pipe joint made of the material can be transported and stored at normal temperature so as to greatly facilitate the application. On the other hand, with the development of science and technology, the service conditions of materials and structures are increasingly harsh, and the deformation of the shape memory alloy is inevitably involved in the actual use of shape memory alloy, and the plastic deformation has a significant influence on the inverse phase change stress and the hysteresis temperature of the shape memory alloy. In order to make better use of this material, scholars at home and abroad have carried out a lot of research work on their thermodynamic characteristics. Based on the systematic analysis of the present research situation of shape memory alloy test and the structure behavior of Ni47Ti44Nb9 shape memory alloy in recent years, the mechanical properties of Ni47Ti44Nb9 shape memory alloy have been studied systematically. Based on this, a micro-mechanical model of shape memory alloy and Ni47Ti44Nb9 shape memory alloy considering plastic deformation effect and lamellar microstructure are proposed. The following progress has been made: 1. The experimental study of Ni47Ti44Nb9 shape memory alloy was carried out: the microstructure of the alloy was observed by means of micro-observation and its components were measured. The characteristic phase transformation temperature and tissue state of the alloy were measured by DSC and XRD. On this basis, the uniaxial tensile test and the pure torsion test of the alloy under different temperature conditions and the research on the temperature-raising response characteristics of the alloy were carried out, and the proportional loading of different pull-out ratios under the temperature of Ms + 30oC was studied. The mechanical response of three typical paths and the comparison of the corresponding temperature rise response characteristics were carried out firstly, and the different variants of the internal activation of materials under different loading paths were measured by XRD. The experimental results show that the matrix material is composed of fine strip-shaped austenite, and the Nb-rich phase particles are dispersed in the matrix. The response of the material under tensile and torsional deformation has a significant difference, including the stress-strain curve and the surface topography of the test piece. However, the phase change stress increases with the increase of the ambient temperature; the mechanical response and the temperature rise response of the material under the biaxial path strongly depend on the loading path and recover along the shortest path in the strain space; The single-axis tension and pure torsion loading are different from the martensitic variants activated in the interior of the material, while the variants activated under the two-dimensional loading path of the pull-and-twist two-dimensional loading path are the superposition of the two. the shape memory alloy is regarded as a mixture of a martensite phase and an austenite phase, the martensite phase is taken into consideration as an elastic-phase change (re-orientation)-plastic three parts, the austenite phase is considered to be two parts of an elastic-plastic phase, The structure model of martensite phase and austenite phase was established based on the non-classical plasticity theory. Considering the effect of plastic deformation on the material inverse phase change stress and the phase change lag temperature, the Tanaka phase change control equation was improved. 3. The shape memory alloy model considering plastic deformation and material microstructure was established: the layered microstructure of shape memory alloy sheet was observed based on the experiment. Considering the structure equation set up by the former part, the structure relation of the representative volume unit is established by the coordination relation of internal stress and strain. In this paper, the shape memory alloy polycrystal is considered as a representative cell group set which is oriented with average orientation along the positive twenty-face decent method, and a cross-level shape memory alloy model is obtained considering plastic influence and material microstructure form by using Hill self-consistent method. The elasticity and pseudoelasticity of shape memory alloy were simulated by using the model, and the calculated results agree well with the experimental results. The influence of plastic deformation can be well described. The microstructure model of NiTiNb shape memory alloy is preliminarily developed. Based on the relationship between the martensite phase and austenite phase, the structure model of shape memory alloy is firstly established by using void hypothesis. The microstructure model of NiTiNb shape memory alloy was initially developed by using the method of Mori-Tanaka. The effects of different volume fraction elastic inclusions and elastic-plastic inclusion on the whole and matrix of materials are studied. The results show that the model can describe its response law very well, and finally, the pure torsion and uniaxial tension response of NiTiNb shape memory alloy under different temperatures are studied. In this paper, the material response of three different paths is simulated by the proportional loading of different pull-and-twist ratio, the first pull-back and the first twist, and the experimental results show that the development model can describe the experimental phenomenon better by comparing the numerical results and the experimental results.
【學位授予單位】:重慶大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TG139.6
【相似文獻】
相關(guān)期刊論文 前10條
1 國文;多孔Ni-Ti形狀記憶合金[J];金屬功能材料;2000年06期
2 唐衛(wèi)勝;TiNi形狀記憶合金的特性及應(yīng)用[J];鈦工業(yè)進展;2000年06期
3 高英俊,陳華寧;形狀記憶合金及其在醫(yī)學中的應(yīng)用[J];廣西物理;2001年01期
4 國文;銅系形狀記憶合金的改性研究[J];金屬功能材料;2001年03期
5 劉建輝,李寧,文玉華;形狀記憶合金的應(yīng)用[J];機械;2001年03期
6 朱明;神奇的形狀記憶合金[J];企業(yè)技術(shù)開發(fā);2001年10期
7 孫世清,郭志猛,殷聲;TiNi形狀記憶合金及其多孔體[J];材料導報;2001年02期
8 朱明;神奇的形狀記憶合金[J];科技信息;2001年06期
9 周海鋒;形狀記憶合金及其應(yīng)用[J];機電設(shè)備;2002年05期
10 白玉俊,陳蘊博,徐慶莘;醫(yī)用多孔Ni-Ti形狀記憶合金的研究與應(yīng)用進展[J];材料導報;2002年09期
相關(guān)會議論文 前10條
1 朱玉萍;兌關(guān)鎖;;磁控形狀記憶合金變體重定向的細觀力學模型[A];慶祝中國力學學會成立50周年暨中國力學學會學術(shù)大會’2007論文摘要集(下)[C];2007年
2 周星;樊榮;張文娟;朱明;梁建輝;毛協(xié)民;;人工食管用TiNi形狀記憶合金的細胞毒性研究[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
3 馮燕忠;孫麗;張雯;;形狀記憶合金在工程中的應(yīng)用及探討[A];第八屆沈陽科學學術(shù)年會論文集[C];2011年
4 劉春雨;涂福泉;許仁波;;磁控形狀記憶合金的研究現(xiàn)狀及其應(yīng)用進展[A];2011中國功能材料科技與產(chǎn)業(yè)高層論壇論文集(第二卷)[C];2011年
5 董治中;王德法;劉文西;陳金銘;高銀露;;微量硼對鐵基形狀記憶合金的性能影響[A];2000年材料科學與工程新進展(上)——2000年中國材料研討會論文集[C];2000年
6 秦添艷;;形狀記憶合金的發(fā)展[A];第四屆中國功能材料及其應(yīng)用學術(shù)會議論文集[C];2001年
7 謝詩芳;劉錦文;;添加元素對Cu-11.46Al-2.86Ni形狀記憶合金韌性的響影[A];首屆中國功能材料及其應(yīng)用學術(shù)會議論文集[C];1992年
8 趙連城;蔡偉;;形狀記憶合金的研究進展[A];第二屆中國功能材料及其應(yīng)用學術(shù)會議論文集[C];1995年
9 戴自怡;劉曉霞;;形狀記憶合金紡織品及其開發(fā)[A];第十屆長三角科技論壇——紡織分論壇論文集[C];2013年
10 于東;張博明;梁軍;武湛君;戴福洪;;形狀記憶合金混雜復合材料的力學性能模擬與實驗分析[A];復合材料——基礎(chǔ)、創(chuàng)新、高效:第十四屆全國復合材料學術(shù)會議論文集(下)[C];2006年
相關(guān)重要報紙文章 前10條
1 李有觀;形狀記憶合金材料的發(fā)展動向[N];中國有色金屬報;2005年
2 本報駐美國記者 毛黎;換位思考別有一番洞天[N];科技日報;2012年
3 本報記者 華凌;金屬家族里的“變形金剛”[N];科技日報;2012年
4 記者 李鵬;4D打。洪_啟材料的自我組裝時代[N];北京科技報;2014年
5 褚幼義;形狀記憶合金,材料新貴族[N];中國有色金屬報;2001年
6 李況;新型建筑電子化[N];中國房地產(chǎn)報;2003年
7 仲欣;新材料讓建筑更“聰明”[N];中華建筑報;2003年
8 敖宏;記憶合金研發(fā) 北京走在前列[N];北京日報;2000年
9 中國科學技術(shù)館 李春才 ;會記憶的金屬材料[N];大眾科技報;2004年
10 彭新建;日開發(fā)出超強磁性制品形狀記憶合金[N];中國冶金報;2006年
相關(guān)博士學位論文 前10條
1 劉記立;柱狀晶組織Cu_(71)Al_(18)Mn_(11)形狀記憶合金的性能及制備加工基礎(chǔ)研究[D];北京科技大學;2016年
2 陳翔;鎳鈦鈮形狀記憶合金特性的試驗與本構(gòu)模型研究[D];重慶大學;2015年
3 王永軍;含形狀記憶合金復合結(jié)構(gòu)振動特性研究[D];哈爾濱工程大學;2010年
4 王玉龍;形狀記憶合金復合材料界面力學特性[D];哈爾濱工程大學;2011年
5 陳斌;鎳鈦鈮形狀記憶合金宏細觀力學行為研究[D];重慶大學;2013年
6 魯軍;磁控形狀記憶合金電磁—機械可逆轉(zhuǎn)換及應(yīng)用基礎(chǔ)研究[D];沈陽工業(yè)大學;2010年
7 李明高;TiNi形狀記憶合金與不銹鋼的連接[D];吉林大學;2006年
8 周博;形狀記憶合金的本構(gòu)模型[D];哈爾濱工程大學;2006年
9 竺致文;用形狀記憶合金對轉(zhuǎn)子系統(tǒng)進行主動控制[D];天津大學;2003年
10 朱勝利;多孔TiNi形狀記憶合金的研究[D];天津大學;2005年
相關(guān)碩士學位論文 前10條
1 柳賓;形狀記憶合金振動系統(tǒng)分析與計算[D];天津大學;2009年
2 孟兆華;形狀記憶合金復合薄板的非線性動力學研究[D];天津大學;2010年
3 裴麗麗;生物醫(yī)用TiNi形狀記憶合金的制備及性能研究[D];東北大學;2008年
4 袁亭亭;基于SMA的混凝土柱智能預應(yīng)力加固機理研究[D];山東大學;2015年
5 楊寬;磁控形狀記憶合金傳感器設(shè)計與信號處理研究[D];沈陽理工大學;2015年
6 渠桂麗;Fe-Ni-Co基多晶形狀記憶合金的組織與性能研究[D];南昌大學;2015年
7 毛偉科;新型防屈曲支撐耗能減震研究分析[D];河北工業(yè)大學;2015年
8 姚康;Fe-Mn-Ga磁性形狀記憶合金的結(jié)構(gòu)和磁性能研究[D];東北大學;2013年
9 李寶龍;POM/TPU形狀記憶合金的制備與性能研究[D];天津科技大學;2014年
10 賓帥;超彈性形狀記憶合金性能試驗與力學模型研究[D];湖南科技大學;2015年
,本文編號:2305303
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2305303.html