AZ31鎂合金表面抗腐蝕復(fù)合膜層制備及表征
發(fā)布時(shí)間:2018-10-15 17:32
【摘要】:鎂合金是一種很有應(yīng)用前景的可降解生物醫(yī)用金屬材料。然而鎂合金在人體環(huán)境中腐蝕速率過快,限制了其臨床應(yīng)用。本文對(duì)AZ31鎂合金進(jìn)行了微弧氧化處理,采用溶膠-凝膠法在合金表面制備了Ca-P層和MgO/Ca-P復(fù)合層,采用涂覆法在合金表面制備了PLA和MgO/PLA復(fù)合層。利用掃描電子顯微鏡(SEM)、能譜(EDS)和X-射線衍射分析(XRD)等方法對(duì)表層進(jìn)行形貌觀察、成分分析與相結(jié)構(gòu)分析,采用拉伸實(shí)驗(yàn)法對(duì)涂層與基體之間的結(jié)合強(qiáng)度進(jìn)行評(píng)價(jià),通過在模擬體液中的浸泡試驗(yàn)、動(dòng)電位極化測(cè)量和電化學(xué)阻抗譜分析等電化學(xué)方法評(píng)價(jià)了表面處理對(duì)AZ31合金抗腐蝕性能的影響。 采用Ca(NO3)2·4H2O和P2O5乙醇溶膠溶液,可在AZ31鎂合金和微弧氧化后的表面制備一層分布均勻的鈣磷層。經(jīng)300℃燒結(jié)時(shí),膜層主要由Ca2P2O7相組成;經(jīng)400℃燒結(jié)時(shí),組成相Ca2P2O7、Ca3(PO4)2和Ca10(PO4)6(OH)2相;經(jīng)500℃燒結(jié)時(shí),組成相全部為Ca10(PO4)6(OH)2相。在300℃到500℃之間燒結(jié),鈣磷膜層與基體的結(jié)合強(qiáng)度不低于22MPa。隨著燒結(jié)溫度的升高,膜層的結(jié)合強(qiáng)度及膜層中裂紋所占面積百分比增大。相比于同溫度下在鎂合金基體表面制備的Ca-P層,MgO/Ca-P復(fù)合膜層的結(jié)合強(qiáng)度更高(不低于33MPa),復(fù)合膜層表面裂紋面積所占百分比更小。原因是MgO中間層減小了Ca-P層與鎂合金基體兩相間熱膨脹系數(shù)的差異,降低了燒結(jié)過程中膜層產(chǎn)生的殘余內(nèi)應(yīng)力。溶膠凝膠法制備的Ca-P層及MgO/Ca-P復(fù)合層能明顯改善AZ31鎂合金的抗腐蝕性能,Ca-P層對(duì)抗蝕性的改善作用隨著燒結(jié)溫度的升高而降低。MgO/Ca-P復(fù)合層對(duì)抗腐蝕性能的改善作用要明顯優(yōu)于單一Ca-P層,其原因是MgO本身具有良好的耐蝕性能,同時(shí)由于其與Ca-P化合物的熱膨脹系數(shù)相近,又具有粗糙的表面結(jié)構(gòu),使得Ca-P層與基體的結(jié)合強(qiáng)度更高。 將PLA溶解在三氯甲烷中制備的膠體涂覆在鎂合金表面及微弧氧化后的鎂合金表面,,可以在合金表面獲得均勻、致密、無裂紋的PLA膜層。PLA與AZ31基體之間的結(jié)合強(qiáng)度不低于35MPa,PLA與MgO之間的結(jié)合強(qiáng)度均不低于40MPa。PLA可以與多孔MgO層之間形成機(jī)械鎖和,導(dǎo)致PLA與MgO之間的結(jié)合強(qiáng)度更高。微弧氧化層經(jīng)PLA封孔后能明顯改善AZ31基體的耐蝕性,其中濃度為10%的聚乳酸涂層對(duì)耐蝕性的改善效果要優(yōu)于濃度為5%的聚乳酸涂層,MgO/PLA復(fù)合層對(duì)AZ31鎂合金抗蝕性的改善作用要明顯優(yōu)于PLA單一層。 相比于AZ31鎂合金表面制備的MgO/Ca-P復(fù)合層,MgO/PLA復(fù)合表面改性后的AZ31鎂合金的抗腐蝕性能更好。
[Abstract]:Magnesium alloy is a promising biodegradable biomedical metal material. However, magnesium alloy corrosion rate in human environment is too fast, limiting its clinical application. In this paper, AZ31 magnesium alloy was treated by micro-arc oxidation, Ca-P and MgO/Ca-P composite layers were prepared by sol-gel method, and PLA and MgO/PLA composite layers were prepared on alloy surface by coating method. The surface morphology, composition and phase structure were observed by scanning electron microscope (SEM) (SEM), (EDS) and X-ray diffraction (XRD), and the bonding strength between coating and substrate was evaluated by tensile test. The effect of surface treatment on corrosion resistance of AZ31 alloy was evaluated by immersion test in simulated body fluid, potentiodynamic polarization measurement and electrochemical impedance spectrum analysis. Using Ca (NO3) 2 4H2O and P2O5 ethanol sol solution, a uniform layer of calcium and phosphorus was prepared on the surface of AZ31 magnesium alloy and micro-arc oxidation. When sintered at 300 鈩
本文編號(hào):2273281
[Abstract]:Magnesium alloy is a promising biodegradable biomedical metal material. However, magnesium alloy corrosion rate in human environment is too fast, limiting its clinical application. In this paper, AZ31 magnesium alloy was treated by micro-arc oxidation, Ca-P and MgO/Ca-P composite layers were prepared by sol-gel method, and PLA and MgO/PLA composite layers were prepared on alloy surface by coating method. The surface morphology, composition and phase structure were observed by scanning electron microscope (SEM) (SEM), (EDS) and X-ray diffraction (XRD), and the bonding strength between coating and substrate was evaluated by tensile test. The effect of surface treatment on corrosion resistance of AZ31 alloy was evaluated by immersion test in simulated body fluid, potentiodynamic polarization measurement and electrochemical impedance spectrum analysis. Using Ca (NO3) 2 4H2O and P2O5 ethanol sol solution, a uniform layer of calcium and phosphorus was prepared on the surface of AZ31 magnesium alloy and micro-arc oxidation. When sintered at 300 鈩
本文編號(hào):2273281
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2273281.html
最近更新
教材專著