新型含銅抗菌鈦合金的制備與性能研究
[Abstract]:Titanium alloy is an ideal biomedical material with good biocompatibility, comprehensive mechanical properties, machinability and corrosion resistance. It is widely used in oral and orthopaedic implants. Therefore, how to control the post-implant infection is a thorny problem that plagues medical staff and attracts more and more attention. In view of these problems, how to ensure the mechanical properties and corrosion resistance of Ti-6Al-4V, which is widely used in orthopedics and dentistry, is highly effective. Based on this design idea, a new type of Ti-6Al-4V alloy was designed and developed by adding an appropriate amount of Cu element with antibacterial function, optimizing the original alloy with appropriate casting, forging and heat treatment processes. Ti-6Al-4V-XCu as-cast titanium alloys with different Cu contents were studied by analyzing the microstructure, mechanical properties, antibacterial properties and corrosion resistance of the alloys. The optimum addition of Cu to Ti-6Al-4V-XCu was determined to be 5%. The hot deformation properties of Ti-6Al-4V-5Cu were studied by GLEEBLE3800 thermal simulator. The results showed that the rheological behavior of the alloys was good. The force increases with the increase of strain rate and the decrease of temperature. After a small deformation variable, the flow stress of the alloy reaches its peak value, and then the continuous softening occurs. The instability zone of the hot working diagram of Ti-6Al-4V-5Cu is small. When the deformation temperature is 900-1050.C and the strain rate is 0.001-0.1 s-1, the power dissipation factor reaches 0.48. The constitutive equation for hot deformation of Ti-6Al-4V-5Cu is obtained: _=6.700*1012[sinh(0.014)]2.809exp(-320*103/RT)_=71.4291n{(Z/6.700*1012)1/2809+[(Z/6.700*1012)2/2.809+1]1/2}-6Al-4V-5Cu material after forging and heat treatment. The results show that the optimum heat treatment regime for the comprehensive properties of Ti-6Al-4V-5C u is heating 930.C water quenching + aging air cooling at 600 _ C. The effect of microstructure on the dissolution of Cu2+ and the antibacterial properties of the alloy is discussed by studying the distribution and dissolution mechanism of C u in Ti-6Al-4V-5C U. In Ti-6Al-4V-5Cu, u mainly exists in phase A and phase P in the form of solid solution and intermetallic compound Ti2Cu. Because of the stronger chemical stability of intermetallic compounds, Cu2+ ions are easier to dissolve in the form of solid solution. In addition, the solubility of Cu in the phase P is higher than that in the phase alpha. Heat treatment can change the ratio of alpha to beta, thus changing the ratio of Cu. Distribution of Cu in the alloy. When the P phase in the alloy increases, the distribution of Cu in the alloy is uniform and dispersed, and the dissolution of Cu 2+ ion is easier. The antibacterial property of the alloy is enhanced. The antibacterial property of Ti-6Al-4V-5Cu is investigated by coating method, surface morphology observation and fluorescence staining, and the gradient concentration of Cu 2+ ion is determined for Staphylococcus aureus. The results showed that Ti-6Al-4V-5Cu had strong killing effect on E.coli and Staphylococcus aureus, and could effectively inhibit the formation of bacterial biofilm. The minimum inhibitory concentration of Cu2+ to Staphylococcus aureus was 100 ug/g. The antimicrobial mechanism of L.Ti-6Al-4V-5Cu is that when the alloy contacts with the bacterial liquid, a small amount of Cu2+ ions dissolve from the alloy, and the concentration gradient drives the Cu2+ ions to diffuse from the alloy surface to the bacterial liquid. When the alloy contacts with the bacteria, the bacterial membrane is destroyed and the permeability of the bacterial membrane is increased, resulting in the leakage of proteins and reducing sugars in the bacteria. 2+ ions destroyed the respiratory chain of bacteria, produced a large number of reactive oxygen species, inhibited the growth of bacteria. At the same time, Cu2+ ions destroyed the replication and amplification of bacterial genes, resulting in genotoxicity. Considering the potential toxicity of the dissolution of Cu ions from Ti-6Al-4V-5Cu alloy, MC3T3-El cells were observed by SEM, MTT, cytoskeleton and apoptosis. The cytotoxicity of Ti-6Al-4V-5Cu was studied by experiments. The results showed that Ti-6Al-4V-5Cu alloy surface cells adhered to the wall and grew normally with complete cytoskeleton contour, almost no dead cells were observed, and no early apoptosis was observed. The cell proliferation rate was much higher than 75%. Ti-6Al-4V-5Cu alloy showed good performance. The hemolysis rate of Ti-6Al-4V-5Cu was 0.6%, showing good blood compatibility. The preliminary results also proved that Ti-6Al-4V-5Cu could promote bone formation, in which Cu ion played a key role. Bacteria and cell size and structure of their own adaptation to external adverse stimuli to adjust differences; 2) bacteria and cell-to-material interaction time differences, bacteria are generally killed within 24 hours; 3) before and after the dissolution of Cu 2+ difference, material early dissolution rate of larger Cu 2+ corrosion resistance and biological safety has a close relationship. The corrosion resistance of Ti-6Al-4V-5Cu was studied by electrochemical method. The corrosion resistance of Ti-6Al-4V-5Cu was good in normal saline and Hank's solution. The pitting potential of Ti-6Al-4V-5Cu was 1.37 V and 1.5 V respectively, which accorded with the corrosion resistance standard of human implant materials. Compatibility and blood compatibility. On the basis of not obviously changing the excellent properties of existing titanium alloys, and having strong antibacterial function, it will become a new type of Biomedical Metal materials with great clinical application potential.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TG146.23
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱久進(jìn);王遠(yuǎn)亮;邱榮蓉;鄒姝姝;王穎;;環(huán)糊精修飾聚乳酸基材料的親水性及細(xì)胞相容性[J];功能材料;2011年01期
2 陳忠敏;羅琴;張瑤琴;劉瓊;;絲膠蛋白的細(xì)胞相容性和抗菌性能研究[J];絲綢;2012年11期
3 耿芳;譚麗麗;賀永蓮;楊敬玉;張炳春;楊柯;;多孔鎂表面生物活性β-TCP涂層的制備及其細(xì)胞相容性研究[J];稀有金屬材料與工程;2009年02期
4 廖立;尹光福;謝克難;康云清;龍沁;賴雪飛;;β-偏磷酸鈣/聚乳酸復(fù)合骨折內(nèi)固定材料的細(xì)胞相容性[J];復(fù)合材料學(xué)報;2009年04期
5 孫東豪,吳徵宇,王文寶,李明忠,盛偉華;絲素改性聚氨酯膜的物理性質(zhì)及其細(xì)胞相容性[J];東華大學(xué)學(xué)報(自然科學(xué)版);2005年02期
6 謝佳;魯雄;張紅平;周先禮;屈樹新;馮波;翁杰;;硅表面CS/BSA復(fù)合微圖形的制備及表征[J];高等學(xué)校化學(xué)學(xué)報;2009年11期
7 李文波;胡順鵬;趙洪石;王冠聰;曹成波;劉宏;王靈平;楊曉宇;;脫細(xì)胞真皮基質(zhì)微結(jié)構(gòu)的堿法調(diào)控及其細(xì)胞相容性[J];化工學(xué)報;2011年02期
8 王碧;岳興建;覃松;趙兵;;葡甘聚糖-殼聚糖復(fù)合膜的制備及細(xì)胞相容性評價[J];華東理工大學(xué)學(xué)報(自然科學(xué)版);2006年10期
9 吳琳;徐興祥;王祿增;榮小芳;田沖;張勁松;;泡沫碳化硅細(xì)胞相容性及動物體內(nèi)植入實驗研究[J];無機材料學(xué)報;2010年02期
10 張志斌;黎達(dá)光;蘇智青;萬昌秀;;骨修復(fù)用聚磷酸鈣/殼聚糖復(fù)合材料的合成及其細(xì)胞相容性[J];復(fù)合材料學(xué)報;2007年06期
相關(guān)會議論文 前10條
1 孟令杰;張曉科;路慶華;;多糖修飾單壁碳納米管的細(xì)胞相容性研究[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2009年
2 董敏;劉彥珠;崔昕燕;張秀芳;公衍道;趙南明;;不同脂膜材料細(xì)胞相容性的比較研究[A];第七屆全國生物膜學(xué)術(shù)討論會論文摘要匯編[C];1999年
3 張世昌;王英杰;劉濤;楊光輝;;多種半透膜材料肝細(xì)胞相容性的對比研究[A];第一屆全國疑難重型肝病大會、第四屆全國人工肝及血液凈化學(xué)術(shù)年會論文集[C];2008年
4 楊紅軍;周玫;李文斌;歐陽晨曦;徐衛(wèi)林;;超細(xì)絲素粉體對聚氨酯細(xì)胞相容性的影響[A];2012年全國高分子材料科學(xué)與工程研討會學(xué)術(shù)論文集(上冊)[C];2012年
5 肖飛;邢蕊峰;董晶;趙義平;陳莉;郭剛;張瑞;;溫度敏感葡聚糖凝膠的合成及其細(xì)胞相容性研究[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(5)[C];2007年
6 鄭妍華;劉宣勇;孫皎;;載銀納米結(jié)構(gòu)鈦表面的細(xì)胞相容性及抗菌性研究[A];2011年第十一屆上海地區(qū)醫(yī)用生物材料研討會——生物材料與再生醫(yī)學(xué)進(jìn)展論文摘要匯編[C];2011年
7 李權(quán);唐休發(fā);華成舸;;靜電紡絲納米纖維膜作為骨骼肌組織工程支架材料的細(xì)胞相容性研究[A];第八次全國口腔頜面—頭頸腫瘤會議論文匯編[C];2009年
8 賀慶;敖強;公衍道;張秀芳;;不同脫酸方法對殼聚糖膜納米拓?fù)浣Y(jié)構(gòu)及細(xì)胞相容性的影響[A];第十一次中國生物物理學(xué)術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
9 高長有;馬列;龔逸鴻;毛崢偉;周杰;劉云肖;何濤;洪奕;馮杰;江兵兵;王ma;馬祖?zhèn)?竺亞斌;沈家驄;;細(xì)胞相容性聚合物組織工程支架[A];中國生物醫(yī)學(xué)工程學(xué)會第六次會員代表大會暨學(xué)術(shù)會議論文摘要匯編[C];2004年
10 段順;隋剛;蔡琴;楊小平;;β-TCP/碳納米纖維支架的細(xì)胞相容性研究[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 經(jīng)鑫;可降解聚合物多孔支架的制備及其細(xì)胞相容性研究[D];華南理工大學(xué);2015年
2 王韶亮;羥基磷灰石涂層硅橡膠生物安全性評價及細(xì)胞相容性提高的分子機制[D];第三軍醫(yī)大學(xué);2015年
3 馬政;新型含銅抗菌鈦合金的制備與性能研究[D];大連理工大學(xué);2015年
4 田冶;表面功能化聚乳酸膜的構(gòu)建及其細(xì)胞相容性評價[D];暨南大學(xué);2008年
5 林園;層層組裝蛋白質(zhì)薄膜及其在改善細(xì)胞相容性上的應(yīng)用[D];吉林大學(xué);2008年
6 王雪峰;基底表面納米結(jié)構(gòu)的細(xì)胞學(xué)效應(yīng)與離子液體的細(xì)胞相容性研究[D];上海交通大學(xué);2008年
7 竺亞斌;胺解改性含酯基聚合物生物材料及其細(xì)胞相容性研究[D];浙江大學(xué);2003年
8 朱惠光;聚乳酸組織工程材料的細(xì)胞相容性表面設(shè)計研究[D];浙江大學(xué);2003年
9 馬祖?zhèn)?聚乳酸軟骨組織工程支架制備、改性及其細(xì)胞相容性研究[D];浙江大學(xué);2003年
10 陶丹;組織工程用PLA纖維基支架的制備、成型及細(xì)胞相容性研究[D];江南大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 李娜;綠色熒光石墨烯量子點細(xì)胞相容性評價及應(yīng)用研究[D];蘭州大學(xué);2015年
2 劉睿;醫(yī)用新型Mg-Li-Ca合金材料的體外細(xì)胞相容性及生物活性評價[D];青島大學(xué);2015年
3 王瑜;可降解聚羥基烷基酸酯生物彈性體細(xì)胞相容性研究[D];大連醫(yī)科大學(xué);2015年
4 梁興宇;膠原涂層的殼聚糖鈦復(fù)合種植體的制備以及其細(xì)胞相容性的研究[D];山西醫(yī)科大學(xué);2011年
5 劉奕君;鈦合金表面含氟聚合物薄膜的制備及其細(xì)胞相容性研究[D];蘭州大學(xué);2011年
6 劉緒建;表面硅烷化改性純鈦及其細(xì)胞相容性研究[D];華南理工大學(xué);2010年
7 楊芷;碳離子硅橡膠改性材料的表面性能及其細(xì)胞相容性評價[D];第三軍醫(yī)大學(xué);2013年
8 劉健;納米含硅羥基磷灰石的制備及其細(xì)胞相容性研究[D];華中科技大學(xué);2010年
9 張愛君;新型豬膠原基真皮支架細(xì)胞毒性及與細(xì)胞相容性的實驗研究[D];山東大學(xué);2007年
10 陳玲;食道上皮組織工程支架的構(gòu)建及其細(xì)胞相容性研究[D];寧波大學(xué);2012年
,本文編號:2248624
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2248624.html