漸進式粘磨層氣壓砂輪及軟磨削試驗
[Abstract]:Laser hardening technology can greatly improve the hardness and wear resistance of mould surface, so it is more and more widely used in die manufacturing industry. The maximum precision of machining workpiece with single mesh abrasive grinding wheel head is limited, and the roughness range of machining workpiece is narrow. In actual finishing, the manual replacement of different grinding wheel heads is often used to process the workpiece step by step. This method does not meet the purpose of automatic machining, and the processing efficiency is low. In order to solve the problem of single layer viscous grinding layer pneumatic grinding wheel. In this paper, a kind of progressive pressure grinding wheel is proposed and fabricated. The idea of layered progressive polishing is adopted. The adhesive layer is mainly composed of 80#Li 120 #Li #3 layers with different mesh number of abrasive particle binders. There are corresponding finishing zones in different mesh number of glued grinding layers. After the outer layer is finished, the new abrasive particles in inner layer are gradually exposed for subsequent processing. The new pneumatic grinding wheel not only avoids the change of workpiece surface processing grain when the grinding wheel head is replaced, but also greatly improves the efficiency and automation of finishing. The specific research contents are as follows: (1) by analyzing the composition of the pneumatic grinding wheel: this paper adopts the hemispherical pneumatic grinding wheel structure, the outer diameter of the matrix layer is 40mm, and the rubber matrix is reinforced by short fiber. The optimum thickness of the rubber layer is 3 mm and the thickness of the adhesive layer is 2. 5 mm. By analyzing the relationship between the preparation efficiency and the processing efficiency, the optimum layer number of the three layers is determined by analyzing the relationship between the layer number of the viscous grinding and the processing efficiency) and the flexible deformation of the three layers is analyzed during the dynamic contact process of the pneumatic grinding wheel. The mechanical model of progressive viscous layer pneumatic grinding wheel is established and simulated. By changing the rotational speed and charging pressure, the influence of rotational speed and inflation pressure on the stress and overall strain of each layer is analyzed, and the dangerous surface of pneumatic grinding wheel is obtained. The suitable processing parameters: inflatable pressure P=0.1MPa and rotational speed V1 250 rpm are obtained, and the rationality of the design is verified. 3) aiming at the pressure grinding wheel with different thickness and different mesh number of abrasive particles, a preparation scheme of the progressive pressure grinding wheel for the viscous layer is put forward. Through the experiments of surface processing quality and abrasive particle shedding of three kinds of monolayer air pressure grinding wheel with different mesh number, the thickness of different adhesive layer is determined to be 2mm / 0.21mm / 0.3mm. The preparation of short fiber reinforced rubber matrix and the pressing of gluing layer were further expounded. KEYENCE VHX-600E digital microscope was used to observe the profile of pressure-pressure grinding wheel. The thickness of different layer is consistent with the theoretical value, and the error is less than 5%. The most suitable process parameters of P=0.1MPa and V=1250rpm are obtained by experiments, and the simulation results are verified. In the actual finishing, the grinding process is stable without replacing the grinding wheel head, and the surface quality of the traditional pneumatic grinding wheel is reduced due to the change of cutting lines caused by the replacement of the pneumatic grinding wheel. At the same time, compared with the 180# single-layer pneumatic grinding wheel, the efficiency of finishing the new progressive pneumatic grinding wheel at the initial stage is increased by 34.6%, and the machining efficiency is increased by 19% compared with the replacement of the grinding wheel head. The research ideas and results of this paper provide a certain guiding significance for the preparation of the progressive viscous layer pneumatic grinding wheel with other structures and the realization of nanoscale machining of the free-form surface of the mould strengthened by laser, which has certain technical reference value.
【學位授予單位】:浙江工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TG743
【相似文獻】
相關期刊論文 前10條
1 傅玉燦,徐鴻鈞;高效磨削用砂輪地貌的優(yōu)化設計研究[J];應用科學學報;2001年01期
2 趙紀明,鄧協(xié)和;砂輪產品的質量狀況分析[J];機械制造;2003年07期
3 惠軍濤,鄧小玲,范全堂;超硬材料砂輪的修整技術[J];礦山機械;2004年02期
4 林影麗;磨削砂輪狀態(tài)在線監(jiān)測方法研究[J];制造技術與機床;2005年08期
5 林影麗;磨削砂輪狀態(tài)在線監(jiān)測方法研究[J];機械工程師;2005年10期
6 李寶膺;華麗;;高品質玉石拋光砂輪的研制[J];超硬材料工程;2006年04期
7 張素香;王登化;陳劍飛;;一元線性回歸分析方法在評價砂輪地貌中的應用[J];機械制造;2007年03期
8 鄧朝暉;伍俏平;張高峰;張璧;;新型砂輪研究進展及其展望[J];中國機械工程;2010年21期
9 歐陽軍;;砂輪的工作原理[J];企業(yè)導報;2011年07期
10 馬可;傅玉燦;徐鴻鈞;;熱管砂輪傳熱性能的數學分析[J];工具技術;2011年07期
相關會議論文 前7條
1 李剛;白云利;;變頻技術在砂輪制造業(yè)的應用[A];2000年晉冀魯豫鄂蒙六省區(qū)機械工程學會學術研討會論文集(河南分冊)[C];2000年
2 王紅軍;李改利;;基于激光的砂輪地貌檢測技術研究[A];北京機械工程學會2008年優(yōu)秀論文集[C];2008年
3 王紅軍;李改利;;基于激光的砂輪地貌檢測技術研究[A];第四屆十三省區(qū)市機械工程學會科技論壇暨2008海南機械科技論壇論文集[C];2008年
4 吳永孝;張廣玉;呂維新;徐建良;;超聲波振動修整砂輪的研究[A];中國電子學會生產技術學分會機械加工專業(yè)委員會第六屆學術年會論文集[C];1995年
5 賀獻寶;;利用PVA砂輪提高工件表面粗糙度等級[A];晉冀魯豫鄂蒙川云貴甘滬湘十二省區(qū)市機械工程學會學術年會論文集(河南分冊)[C];2005年
6 王先逵;馬明霞;應寶閣;;金屬結合劑金剛石微粉砂輪電火花修銳技術研究[A];第八屆全國電加工學術年會論文集[C];1997年
7 余劍武;何利華;尚振濤;尹韶輝;黎文;覃新元;;微細砂輪電火花修整實驗研究[A];第15屆全國特種加工學術會議論文集(上)[C];2013年
相關重要報紙文章 前2條
1 李長江;分切薄刀和砂輪的選用及使用方法[N];中國包裝報;2006年
2 劉平;百名專家解讀百種產品質量[N];中國質量報;2010年
相關博士學位論文 前9條
1 李曉冬;砂輪在線液體自動平衡系統(tǒng)及其平衡精度的研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2004年
2 曾晰;軟固結磨粒氣壓砂輪設計方法及材料去除特性研究[D];浙江工業(yè)大學;2013年
3 張小鋒;關于砂輪地貌雙目視覺檢測技術的基礎研究[D];南京航空航天大學;2007年
4 袁和平;磨料群可控排布砂輪的制備技術及其磨削性能[D];大連理工大學;2010年
5 赫青山;熱管砂輪高效磨削加工技術研究[D];南京航空航天大學;2013年
6 龐子瑞;超高速點磨削陶瓷CBN砂輪性能的實驗研究[D];東北大學;2009年
7 李長河;砂輪約束磨粒噴射精密光整加工機理及表面特性的研究[D];東北大學;2006年
8 劉月明;磨削過程建模與點磨削工藝的若干研究[D];東北大學;2012年
9 楊曉紅;不平衡量信號的精密譜分析及其在砂輪動平衡測控儀中的應用[D];中國科學院研究生院(長春光學精密機械與物理研究所);2006年
相關碩士學位論文 前10條
1 王改民;新型樹脂切割砂輪的研制[D];鄭州大學;2001年
2 吳春香;智能砂輪半自動平衡裝置軟硬件開發(fā)[D];山東大學;2007年
3 魏于評;不平衡量對砂輪跳動影響的研究[D];華僑大學;2011年
4 王明;基于磁控磨粒均布的微細砂輪制備方法研究[D];湖南大學;2011年
5 游永豐;基于磁場控制的微細砂輪制備及其磨削性能研究[D];湖南大學;2013年
6 李志明;硅晶體低損傷磨削砂輪的研制[D];大連理工大學;2012年
7 丁潔瑾;軟固結磨粒氣壓砂輪的優(yōu)化設計及性能試驗[D];浙江工業(yè)大學;2012年
8 郗元;砂輪不平衡量檢測相關技術研究[D];長春工業(yè)大學;2013年
9 何浩;超高速砂輪的安全性研究[D];湖南大學;2014年
10 戴婷;冠型軟固結磨粒氣壓砂輪接觸應力分析與試驗研究[D];浙江工業(yè)大學;2015年
,本文編號:2183566
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2183566.html