鎳基定向組織結(jié)構(gòu)合金涂層的制備及性能研究
本文選題:Ni60 + SAPS; 參考:《蘭州理工大學(xué)》2016年碩士論文
【摘要】:近年來,由難熔性材料制備成的保護(hù)涂層越來越多的是通過優(yōu)點(diǎn)較多的超音速等離子噴涂(SAPS)方式來制備的,例如金屬基耐磨耐蝕、熱障陶瓷涂層等,但是發(fā)現(xiàn)由于涂層形成過程受工藝及參數(shù)限制,涂層中仍然存在著組織缺陷、內(nèi)聚力低及結(jié)合強(qiáng)度不足的問題,這不但使得噴涂層的應(yīng)用場(chǎng)合受限而且也縮短其使用壽命。因此,研究者們?cè)噲D采用不同的制備工藝或者添加不同尺寸硬質(zhì)相、稀土、自潤(rùn)滑相等方式來解決上述問題。在合金研究過程中,定向晶因其很大程度上改善了材料的縱向力學(xué)性能和物理性能,所以一直備受研究者和生產(chǎn)者的關(guān)注。因此,本文試圖將SAPS、高頻感應(yīng)重熔技術(shù)、定向強(qiáng)制冷卻三種工藝進(jìn)行復(fù)合,在原始成分不變的條件下,通過在冶金結(jié)合的涂層中制備出致密的定向組織結(jié)構(gòu),來使得保護(hù)層的使用及工藝性能得到改良,尤其是摩擦和磨損特性。本文通過SAPS方式,使得Ni60涂層被預(yù)制在45#鋼基材上,然后利用定向冷卻裝置在不同流量冷卻水的作用下,對(duì)涂層進(jìn)行感應(yīng)處理+定向強(qiáng)制冷卻。通過金相顯微鏡、SEM(EDS)、XRD、EPMA、宏觀洛氏硬度和微觀硬度測(cè)試儀器、萬(wàn)能摩擦磨損實(shí)驗(yàn)機(jī)等手段探究和測(cè)試了不同流量冷卻水對(duì)感應(yīng)重熔涂層組織和相演變、元素分布、使用及工藝性能的影響。利用Origin 7.5、Jade 6.5、Image-pro plus 6.0等相關(guān)軟件分析了涂層的物相種類及孔隙率等。根據(jù)涂層的組織結(jié)構(gòu)、物相、元素分布的演變分析結(jié)果,可以得出:隨著冷卻水流量的不斷增大,涂層的組織結(jié)構(gòu)發(fā)生了極大改變,涂層與基材之間均形成了一條明顯冶金結(jié)合帶。當(dāng)冷卻水流量為20、80、120L/h時(shí),定向的柱晶出現(xiàn)在涂層中,其中當(dāng)流量為80L/h時(shí),涂層中形成的柱狀晶結(jié)構(gòu)比較致密細(xì)小,并且該涂層表面“十”字形的柱狀晶中心對(duì)稱性最好,并且柱晶偏離[001]方向的角度θ值最小,僅在0°~8°之間,而且沿((200)晶面)取向程度最高,即該冷卻條件下,涂層中形成的定向組織相對(duì)比較良好;噴涂涂層的物相主要為γ-Ni、Fe Ni3、Ni2.9Cr0.7Fe0.36、Cr23C6、Cr2B、Fe3B,感應(yīng)重熔后出現(xiàn)新相γ-(Fe,Ni)替代Fe Ni3相,其余相基本不變,感應(yīng)重熔強(qiáng)制冷卻涂層物相為γ-Ni、γ-(Fe,Ni)、Ni2.9Cr0.7Fe0.36、Cr C、Cr B等;元素分布表明初始柱狀晶處主要富集Ni、Fe元素,而晶粒之間主要富集著的大量硬質(zhì)相構(gòu)成元素,強(qiáng)化了柱晶,對(duì)耐磨性有利。涂層性能研究結(jié)果表明:噴涂組織涂層截面顯微硬度沿45#鋼涂層方向,先增大后減小,而高頻感應(yīng)重熔組織涂層和定向組織結(jié)構(gòu)涂層的顯微硬度卻小幅增加,并且二者的截面微觀及表面宏觀硬度均低于預(yù)制Ni60涂層;感應(yīng)重熔后預(yù)制涂層的孔隙率從2.45%降低為0.59%,而定向組織結(jié)構(gòu)涂層的孔隙率最小為0.23%;室溫干摩擦條件下,隨著載荷的增加,三種不同組織結(jié)構(gòu)涂層與1Cr18Ni9Ti對(duì)磨的過程中,定向組織結(jié)構(gòu)涂層的磨損量及磨損率均最低,表明其耐磨性優(yōu)于其他兩種涂層,并且和噴涂涂層摩擦系數(shù)相比,其摩擦系數(shù)有小幅增加,即阻摩特性有所增加。除此之外,噴涂涂層的主要磨損方式為疲勞剝落+粘著涂抹,感應(yīng)重熔涂層的主要磨損方式為粘著涂抹+輕微剝落,定向組織結(jié)構(gòu)涂層主要以粘著涂抹為主。
[Abstract]:In recent years, more and more protective coatings made from refractory materials have been prepared by a high number of supersonic plasma spraying (SAPS), such as metal base resistance and corrosion resistance, thermal barrier ceramic coating, etc. but it is found that the coating process is limited by the process and the number of parameters, and the cohesive force still exists in the coating. The problems of low and low bonding strength not only restrict the application of the spraying layer but also shorten the service life of the coating. Therefore, the researchers are trying to solve the above problems by using different preparation processes or adding different sizes of hard phase, rare earth and self lubrication. In the process of alloy research, the directional crystals are to a great extent. The longitudinal mechanical and physical properties of the material have been improved so much attention has been paid to the researchers and producers. Therefore, this paper attempts to compounded the three processes of SAPS, high frequency induction remelting technology and directional forced cooling. Under the condition of constant original composition, the dense directional tissue junction is prepared by the metallurgical bonding coating. To make the use and process performance of the protective layer improved, especially the friction and wear characteristics. In this paper, the Ni60 coating was prefabricated on the 45# steel substrate by SAPS, and the coating was induced and directed forced cooling by the directional cooling device under the action of different flow cooling water. Through metallographic microscope, SEM (ED) S), XRD, EPMA, macroscopic Rockwell hardness and microhardness tester, universal friction and wear test machine, etc., explore and test the influence of different flow cooling water on Microstructure and phase evolution, element distribution, use and process properties of induction remelting coating. Using Origin 7.5, Jade 6.5, Image-pro plus 6 and other related software, the coating materials are analyzed. According to the microstructure, phase and element distribution of the coating, it can be concluded that the structure of the coating has been greatly changed with the increase of cooling water flow, and a clear metallurgical bonding zone is formed between the coating and the base material. When the cooling water flow is 20,80120L/h, the directional column is made. When the flow rate is 80L/h, the columnar crystal structure in the coating is compact and fine, and the "ten" shape of the columnar crystal has the best center symmetry, and the angle theta value of the columnar crystal deviates from the [001] direction, only at 0 ~8 degrees, and the orientation degree along ((200) surface) is the highest, that is, the cooling bar. The orientation structure formed in the coating is relatively good, and the main phase of the coating is gamma -Ni, Fe Ni3, Ni2.9Cr0.7Fe0.36, Cr23C6, Cr2B, Fe3B, and the new phase gamma (Fe, Ni) is replaced by the Fe Ni3 phase after remelting, and the other phases are basically the same. The initial columnar distribution shows that the initial columnar crystal mainly enriched Ni and Fe elements, and the main content of the hard phase between the grains was enriched, which was beneficial to the wear resistance. The results of the study on the properties of the coating showed that the microhardness of the coating section of the coating first increased and then decreased along the direction of the 45# steel, while the high frequency induction remelting coating was used. The microhardness of the directional microstructure coating increased slightly, and the micro and surface macro hardness of the two sections were lower than the prefabricated Ni60 coating; the porosity of the prefabricated coating decreased from 2.45% to 0.59% after induction remelting, while the porosity of the directional microstructure coating was 0.23%, and three kinds under the dry friction condition, with the increase of load. The wear rate and wear rate of the coating are the lowest in the coating of different tissue structure and 1Cr18Ni9Ti, indicating that the wear resistance of the coating is better than the other two kinds, and the friction coefficient of the coating is increased slightly compared with the friction coefficient of the spray coating, that is, the friction resistance characteristics increase. In addition, the main wear side of the coating is the coating. The main wear mode of induction remelting coating is adhesive smear + slight peeling, and the main coating of directional tissue structure is mainly adhesive smear.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TG174.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉俊玲,,郭治安;涂層的感應(yīng)重熔工藝[J];焊接學(xué)報(bào);1994年01期
2 蔚曉嘉,赫虎在,薛錦;涂層感應(yīng)重熔的電磁場(chǎng)與溫度分布[J];西安交通大學(xué)學(xué)報(bào);1996年07期
3 蔚曉嘉,丁路平;不同材質(zhì)涂層的感應(yīng)重熔工藝性研究[J];太原重型機(jī)械學(xué)院學(xué)報(bào);1996年03期
4 蔚曉嘉,郭治安,薛錦;銅基類涂層的感應(yīng)重熔特性研究[J];西安交通大學(xué)學(xué)報(bào);1997年06期
5 逯允龍,谷豐,戴洪斌,潘強(qiáng)榮;感應(yīng)熔涂工藝的研究[J];哈爾濱理工大學(xué)學(xué)報(bào);2003年01期
6 劉俊玲,郝虎在,郭治安;感應(yīng)重熔鐵基自熔合金熔敷層顯微組織[J];山西礦業(yè)學(xué)院學(xué)報(bào);1995年01期
7 周玉林;自熔性合金涂層感應(yīng)重熔技術(shù)的研究與應(yīng)用[J];湖南冶金;1995年01期
8 顧偉超,張秀群,沈德久,王玉林;鐵基電弧噴涂鋁層的感應(yīng)重熔處理[J];熱加工工藝;2004年01期
9 周玉林;;自熔性合金涂層感應(yīng)重熔技術(shù)的研究與應(yīng)用[J];機(jī)械工人;1988年10期
10 路陽(yáng);鄧剛;楊效田;郭文俊;施曉雨;;高鋁青銅粉體超音速等離子噴涂層感應(yīng)重熔后的組織及性能[J];北京科技大學(xué)學(xué)報(bào);2014年03期
相關(guān)碩士學(xué)位論文 前5條
1 王鵬春;鎳基定向組織結(jié)構(gòu)合金涂層的制備及性能研究[D];蘭州理工大學(xué);2016年
2 郝雪龍;Q235鋼表面噴鋁感應(yīng)重熔過程的數(shù)值模擬與實(shí)驗(yàn)研究[D];燕山大學(xué);2005年
3 劉俊釗;感應(yīng)重熔對(duì)多元鋁青銅S-APS涂層再結(jié)晶組織的影響研究[D];蘭州理工大學(xué);2012年
4 鄧剛;感應(yīng)重熔對(duì)超細(xì)高鋁青銅粉體超音速等離子噴涂層組織性能的影響[D];蘭州理工大學(xué);2013年
5 馬郡珠;Ni60界面優(yōu)化的高鋁青銅涂層組織結(jié)構(gòu)及性能研究[D];蘭州理工大學(xué);2014年
本文編號(hào):2060463
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/2060463.html