AA5083管材HGMF工藝?yán)碚摷皵?shù)值分析
發(fā)布時(shí)間:2018-05-14 19:50
本文選題:鋁合金 + 管材 ; 參考:《燕山大學(xué)》2015年碩士論文
【摘要】:本課題來源國(guó)家青年科學(xué)基金項(xiàng)目,輕合金管狀構(gòu)件熱態(tài)顆粒介質(zhì)壓力成形工藝及理論研究,項(xiàng)目編號(hào):51305386。固體顆粒介質(zhì)熱成形工藝(Hot Solid Granule Medium Forming Technology,簡(jiǎn)稱HGMF工藝)是采用耐熱固體顆粒介質(zhì)代替現(xiàn)有軟模熱成形工藝中液體或氣體介質(zhì)的作用,來實(shí)現(xiàn)輕合金管、板材構(gòu)件成形的工藝方法。該工藝具有顆粒介質(zhì)易于密封,壓力建立簡(jiǎn)便,承溫范圍廣,壓力分布不均等優(yōu)點(diǎn)。該工藝的研發(fā)為高強(qiáng)度、低塑性、難變形管材以及復(fù)雜形狀、高尺寸精度和表面質(zhì)量要求高的輕合金管狀構(gòu)件的熱成形制造提供了新的技術(shù)和手段,具有廣闊的應(yīng)用前景。本文以5系鋁合金焊接管材為研究對(duì)象,以耐熱固體顆粒為傳壓媒介,對(duì)AA5083管材構(gòu)件的HGMF工藝進(jìn)行理論分析和數(shù)值仿真。開展了AA5083管材熱態(tài)材料性能試驗(yàn)和熱態(tài)顆粒介質(zhì)傳壓規(guī)律試驗(yàn),以此為基礎(chǔ)進(jìn)行管材成形性能的理論分析,建立了HGMF工藝管材成形數(shù)值仿真模型,細(xì)致討論了工藝參數(shù)對(duì)管材零件成形性能的影響,為AA5083管材顆粒介質(zhì)熱成形的深入研究提供了數(shù)據(jù)支持。本文研制了管材熱態(tài)下的環(huán)向拉伸裝置,進(jìn)行了AA5083管材的力學(xué)性能測(cè)試與研究。通過熱態(tài)下管材的單向拉伸實(shí)驗(yàn),獲取不同溫度、應(yīng)變速率條件下的真實(shí)應(yīng)力—應(yīng)變曲線,并給出本構(gòu)關(guān)系的數(shù)學(xué)描述;研究了溫度、應(yīng)變速率對(duì)屈強(qiáng)比、延伸率、厚向異性等參數(shù)對(duì)材料性能的影響;通過斷口形貌觀測(cè),分析管材斷裂特征和成因。與此同時(shí),研制了熱態(tài)固體顆粒介質(zhì)體積壓縮率、側(cè)壓系數(shù)及傳壓規(guī)律實(shí)驗(yàn)裝置,進(jìn)行了熱態(tài)固體顆粒介質(zhì)(GM顆粒)力學(xué)特性及傳壓規(guī)律研究,測(cè)試不同粒徑介質(zhì)在不同溫度條件下的體積壓縮率和側(cè)壓力分布曲線;在熱態(tài)顆粒介質(zhì)力學(xué)性能及傳壓規(guī)律試驗(yàn)基礎(chǔ)之上,應(yīng)用有限元方法研究顆粒介質(zhì)在壓縮過程中的壓力傳遞規(guī)律;基于熱態(tài)下材料的力學(xué)性能試驗(yàn)、固體顆粒的傳壓性能試驗(yàn)以及ABAQUES有限元軟件平臺(tái),對(duì)AA5083管材HGMF工藝進(jìn)行理論分析和數(shù)值仿真,建立AA5083管材自由脹形和管端進(jìn)給脹形下的HGMF工藝?yán)碚摲治黾皵?shù)值仿真模型,得到了不同脹形條件下的主應(yīng)變軌跡,脹形形狀及其壁厚分布情況。
[Abstract]:This subject comes from the project of National Youth Science Foundation, Technology and Theory Research of Hot granular Media pressure forming of Light Alloy Tubular component, item No.: 51305386. Hot Solid Granule Medium Forming Technology, (HGMF process) is a heat resistant solid particle medium used to replace the liquid or gas medium in the existing soft die hot forming process to realize the forming process of light alloy tube and sheet metal. The process has the advantages of easy sealing of granular medium, simple pressure establishment, wide temperature bearing range and uneven pressure distribution. The research and development of this process provides a new technology and means for the hot forming manufacture of light alloy tubular members with high strength, low plasticity, difficult deformation, complex shape, high size precision and high surface quality, and has a broad application prospect. In this paper, the theoretical analysis and numerical simulation of the HGMF process of AA5083 pipe components are carried out by taking 5 series aluminum alloy welded pipes as the research object and heat resistant solid particles as the pressure transmission medium. In this paper, the hot material performance test and hot particle medium pressure transfer test of AA5083 pipe are carried out. Based on this, the theoretical analysis of tube forming property is carried out, and the numerical simulation model of HGMF process pipe forming is established. The influence of process parameters on the forming properties of pipe parts is discussed in detail, which provides data support for the further research of AA5083 pipe particle medium hot forming. In this paper, a hoop drawing device for AA5083 pipe under hot state is developed, and the mechanical properties of AA5083 pipe are tested and studied. The true stress-strain curves at different temperatures and strain rates are obtained through uniaxial tensile tests of the tubes in hot state, and the mathematical description of the constitutive relations is given, and the effect of temperature and strain rate on the yield ratio and elongation is studied. The influence of parameters such as thickness anisotropy on the properties of the material and the fracture characteristics and origin of the pipe were analyzed by the observation of fracture morphology. At the same time, the experimental device of volume compressibility, lateral pressure coefficient and pressure transfer law of hot solid particle medium is developed. The mechanical properties and pressure transfer law of GM particle in hot solid particle medium are studied. The volume compressibility and lateral pressure distribution curves of different particle size media at different temperatures were measured, and the mechanical properties and pressure transfer law of hot particle medium were tested. The finite element method is used to study the pressure transfer law of granular media during compression, based on the mechanical properties of materials in hot state, the compression properties of solid particles and the ABAQUES finite element software platform. The theoretical analysis and numerical simulation of AA5083 tube HGMF process are carried out, and the theoretical analysis and numerical simulation model of HGMF process under free bulging and feed bulging at the end of AA5083 pipe are established, and the main strain trajectories under different bulging conditions are obtained. Bulging shape and wall thickness distribution.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG306
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 吳曉煒;王勇;梁海建;李敬;馬朝利;趙莎莎;馮雙生;楊紅新;;鋁合金覆蓋件快速超塑性成形技術(shù)[J];塑性工程學(xué)報(bào);2012年01期
相關(guān)碩士學(xué)位論文 前1條
1 陳國(guó)亮;顆粒介質(zhì)成形工藝研究[D];南京航空航天大學(xué);2008年
,本文編號(hào):1889230
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1889230.html
最近更新
教材專著