微擠壓成形工藝數(shù)值模擬及實驗研究
本文選題:微成形 + 微成形模具。 參考:《山東建筑大學》2015年碩士論文
【摘要】:近年來,微成形技術(shù)逐漸成為機械制造領(lǐng)域研究的重點,微成形技術(shù)得到廣泛的應(yīng)用與其成形性好、成形精確、低耗高效等優(yōu)點是分不開的。微塑性成形技術(shù)以塑性變形方式來制造微型零件,適合微型零件的批量制造,實現(xiàn)高質(zhì)量低成本,微成形技術(shù)自出現(xiàn)以來,就一直受到世界各國及各科研機構(gòu)的重視,在航天、軍用、醫(yī)療、微電子等領(lǐng)域具有十分重要的應(yīng)用前景。由于加工對象尺寸微小,存在尺度效應(yīng),傳統(tǒng)塑性加工成形機理和材料變形規(guī)律不能直接應(yīng)用于微成形。無論是對微成形模具的設(shè)計還是對成形過程中問題的探索,微塑性成形技術(shù)都是一個新的研究領(lǐng)域,對于微成形技術(shù)的研究具有十分重要的科學意義。本文采用計算機數(shù)值模擬與實驗研究相結(jié)合的方法,研究分析微塑性成形正擠壓工藝中的基本規(guī)律和內(nèi)在機理。首先,針對微成形技術(shù)的發(fā)展過程,以及工藝、尺寸效應(yīng)、微模具、數(shù)值模擬技術(shù)方面的進展和現(xiàn)狀進行綜合分析。整理微成形技術(shù)的相關(guān)理論基礎(chǔ)。包括剛塑性有限元理論、晶體塑性有限元理論以及應(yīng)變梯度理論,并依此作為本文的理論依據(jù)。其次,對微成形工藝模具設(shè)計進行了初步探討,參考傳統(tǒng)擠壓模具的設(shè)計方法,設(shè)計并制造出了操作簡便、易于組裝及拆卸的微擠壓模具。再次,利用制造好的模具,選取典型的微型正擠壓工藝進行實驗研究,分析不同坯料高度、尺寸條件下,微細特征擠壓高度成形規(guī)律以及它們對成形性的影響。在實驗的基礎(chǔ)之上,分別對采用純鋁材料的微擠壓成形件和采用ECAP超細晶純鋁材料的微擠壓成形件進行微觀組織觀察和分析。第四,對微塑性正擠壓成形過程進行數(shù)值模擬。以剛塑性有限元理論為基礎(chǔ),運用有限元軟件deform對微型正擠壓工藝過程進行了數(shù)值模擬,分析成形規(guī)律并把模擬結(jié)果和實驗結(jié)果相對比,驗證模擬方法的可靠性。在此之上,建立四種具有不同過渡段設(shè)計的微模具模型,以消耗能量、流動性、效率、積壓缺陷為目標,進行了多次模擬分析,揭示各過渡段變化對微細擠壓工藝的影響,并確定最佳合理方案。
[Abstract]:In recent years, microforming technology has gradually become the focus of research in the field of mechanical manufacturing. Its wide application is inseparable from its advantages of good formability, precision, low consumption and high efficiency. Micro plastic forming technology makes micro parts by plastic deformation, which is suitable for batch manufacturing of micro parts, and achieves high quality and low cost. Since its emergence, micro forming technology has been attached great importance to by countries and scientific research institutions all over the world. Military, medical, microelectronics and other fields have a very important application prospects. Because of the small size and scale effect, the traditional plastic forming mechanism and material deformation law can not be directly applied to micro forming. Microplastic forming technology is a new research field, which is of great scientific significance to the research of micro-forming technology, not only for the design of micro-forming die but also for the exploration of the problems in the forming process. In this paper, the basic law and internal mechanism of micro-plastic forming forward extrusion process are studied and analyzed by combining computer numerical simulation with experimental research. Firstly, the development process of microforming technology, as well as the process, size effect, micromold, numerical simulation technology progress and current situation are comprehensively analyzed. The theoretical basis of finishing microforming technology. It includes rigid-plastic finite element theory, crystal plastic finite element theory and strain gradient theory. Secondly, the design of microforming process die is discussed preliminarily. Referring to the design method of traditional extrusion die, the micro-extrusion die is designed and manufactured, which is easy to operate and easy to assemble and disassemble. Thirdly, the typical micro-forward extrusion technology is selected to study the forming law of micro-characteristic extrusion height and its influence on formability under different blank height and size. On the basis of the experiments, the microstructure of micro-extruded parts with pure aluminum and micro-extruded parts with ECAP ultrafine grain pure aluminum were observed and analyzed respectively. Fourthly, numerical simulation of micro-plastic forward extrusion process is carried out. Based on the rigid-plastic finite element theory, the micro-forward extrusion process was simulated by finite element software deform. The forming law was analyzed and compared with the experimental results to verify the reliability of the simulation method. On the basis of this, four kinds of micromould models with different transition stages are established. Aiming at energy consumption, fluidity, efficiency and backlog defects, several simulation analyses are carried out to reveal the influence of each transition stage on the micro-extrusion process. And determine the best and reasonable scheme.
【學位授予單位】:山東建筑大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TG376
【參考文獻】
相關(guān)期刊論文 前10條
1 魏偉,陳光;ECAP等徑角擠壓變形參數(shù)的研究[J];兵器材料科學與工程;2002年06期
2 單德彬,郭斌,王春舉,周健,袁林;微塑性成形技術(shù)的研究進展[J];材料科學與工藝;2004年05期
3 賈寶賢;胡富強;王振龍;趙萬生;;線電極電火花磨削技術(shù)在微細加工中的應(yīng)用[J];電加工與模具;2006年S1期
4 王春舉,曲東升,周健,單德彬,郭斌,孫立寧;精密微塑性成形系統(tǒng)的研制[J];鍛壓技術(shù);2005年03期
5 狄士春,于濱,趙萬生,遲關(guān)心;微細電火花線切割加工技術(shù)的研究現(xiàn)狀及發(fā)展趨勢[J];航空精密制造技術(shù);2004年01期
6 馬寧,董湘懷;微細塑性成形計算機模擬技術(shù)研究[J];華中科技大學學報(自然科學版);2005年04期
7 陳勇;齊樂華;周計明;楊方;;超塑性微擠壓成形控制系統(tǒng)研究[J];計算機仿真;2009年02期
8 周勇;傅蔡安;;基于DEFORM-3D的微型螺釘冷成形過程有限元分析[J];機械設(shè)計與制造;2008年03期
9 張勝華;李玉強;董劍安;須俊華;;尾門內(nèi)板成形工藝的研究與探討[J];模具技術(shù);2012年04期
10 申昱;于滬平;阮雪榆;;微小尺度鐓擠復(fù)合成形研究[J];塑性工程學報;2006年01期
,本文編號:1823640
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1823640.html