滲碳體的形態(tài)和分布對(duì)珠光體鋼絲拉拔形變及性能的影響
本文選題:珠光體鋼絲 + 拉拔形變 ; 參考:《東南大學(xué)》2015年碩士論文
【摘要】:為研究適合拉拔形變的珠光體組織,以珠光體鋼絲為原材料,經(jīng)退火處理得到球狀珠光體組織,經(jīng)淬火+高溫回火處理得到不同尺寸的球狀滲碳體+基體鐵素體組織,以這四種組織的拉拔形變過程為研究對(duì)象,采用掃描電鏡(SEM)、透射電鏡(TEM)和電子背散射衍射(EBSD)等手段,研究了滲碳體的形貌、分布、尺寸對(duì)鋼絲冷拉拔形變的影響,并探討了其形變強(qiáng)化機(jī)制,得出以下結(jié)論:比較研究了片狀珠光體鋼絲(片狀滲碳體+鐵素體)與球狀珠光體鋼絲(球狀滲碳體+鐵素體)的冷拉形變過程,結(jié)果表明:1)片狀滲碳體在形變中表現(xiàn)出一定的變形能力,處于有利取向的層片細(xì)化、間距減少,不利取向的層片則發(fā)生了彎曲、扭轉(zhuǎn),甚至斷裂、碎化;硬的球狀滲碳體在鋼絲形變時(shí)不發(fā)生塑性變形,而會(huì)隨著鐵素體的塑性變形逐漸轉(zhuǎn)向于平行拉拔的方向,應(yīng)變量為1.6左右時(shí)已基本平行于拉拔方向,同時(shí)形變組織中的碳化物周圍出現(xiàn)了較多的微觀缺陷。2)片狀珠光體鋼絲強(qiáng)度遠(yuǎn)高于球狀珠光體鋼絲,且片狀珠光體鋼絲在應(yīng)變量ε1.6左右時(shí),加工硬化率明顯增加。3)片狀珠光體組織的110織構(gòu)強(qiáng)度隨應(yīng)變量的增加不斷增強(qiáng),與球狀珠光體組織相比,片狀珠光體組織的織構(gòu)強(qiáng)度更高。對(duì)球狀珠光體鋼絲和淬火+高溫回火態(tài)鋼絲(球狀滲碳體+鐵素體)的冷拉形變過程進(jìn)行對(duì)比研究,結(jié)果表明:1)當(dāng)組織中存在較多的大尺寸碳化物,且碳化物彌散分布時(shí),容易在形變時(shí)產(chǎn)生缺陷。2)滲碳體粒子平均粒徑越小,粒子分布越彌散,強(qiáng)度越高,因此淬火+高溫回火態(tài)(小尺寸Fe3C球)鋼絲強(qiáng)度高于淬火+高溫回火態(tài)(大尺寸Fe3C球)鋼絲,球狀珠光體鋼絲強(qiáng)度最低。3)根據(jù)加工硬化率可將形變過程分為三階段:較小形變(ε0.4)時(shí)球狀珠光體組織的加工硬化率較大:中等形變階段(0.4ε1.6)三種組織的加工硬化率相當(dāng);較大形變階段(ε1.6),碳化物彌散分布的組織加工硬化作用更明顯。球狀滲碳體+鐵素體雙相材料的形變強(qiáng)化研究結(jié)果表明:1)材料形變后,在晶粒內(nèi)形成了多處高密度位錯(cuò)纏結(jié)區(qū),在碳化物周圍形成了位錯(cuò)環(huán)、位錯(cuò)纏結(jié),以此阻礙后續(xù)位錯(cuò)的運(yùn)動(dòng),使材料加工硬化。2)位錯(cuò)在大顆碳化物周圍更容易形成位錯(cuò)纏結(jié),周圍應(yīng)力更集中,因此更易形成缺陷。3)滲碳體為球狀時(shí),形變過程中碳化物不變形,其周圍形成了嚴(yán)重的位錯(cuò)塞積和應(yīng)力集中,因此組織中易出現(xiàn)缺陷;滲碳體為片狀時(shí),滲碳體在鋼絲拉拔過程中能與基體協(xié)調(diào)變形,組織中不易產(chǎn)生缺陷,因此片狀珠光體的可拉拔性能更佳。
[Abstract]:In order to study the pearlite microstructure suitable for drawing deformation, the spherical pearlite structure was obtained by annealing with pearlite wire as raw material, and the ferrite structure of spherical cementite matrix was obtained by quenching and tempering at high temperature. The effects of morphology, distribution and size of cementite on cold drawing deformation of steel wire were studied by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and electron backscatter diffraction (EBSD). The mechanism of deformation strengthening is also discussed. The following conclusions are drawn: the cold tensile deformation process of sheet pearlite steel wire (lamellar cementite ferrite) and spherical pearlite steel wire (spherical cementite ferrite) is studied. The results show that the plate-like cementite shows a certain deformation ability during deformation. The layers in favorable orientation are thinned and the spacing is reduced, while the unfavorable orientation of the lamellae is bending, torsion, even fracture and fragmentation. The hard spherical cementite does not produce plastic deformation when the steel wire is deformed, but gradually turns to the direction of parallel drawing with the plastic deformation of the ferrite. When the strain is about 1.6, it is basically parallel to the drawing direction. At the same time, there are many microdefects around carbide in deformed microstructure. 2) the strength of lamellar pearlite steel wire is much higher than that of spherical pearlite steel wire, and the lamellar pearlite steel wire is about 1.6 when the strain is about 1.6. The strength of 110 texture of lamellar pearlite increases with the increase of strain, and the texture strength of lamellar pearlite is higher than that of spherical pearlite. The cold tensile deformation process of spherical pearlite steel wire and quenched high temperature tempered steel wire (spherical cementite ferrite) is studied. The results show that: 1) when there are more large size carbides in the microstructure and the carbides are dispersed, The smaller the average particle size of cementite particle is, the more dispersed the particle distribution is and the higher the strength is. Therefore, the strength of quenched high-temperature tempered steel wire (small size Fe3C ball) is higher than that of quenched high-temperature tempered steel wire (large size Fe3C ball). According to the work hardening rate, the deformation process can be divided into three stages: when the deformation is smaller (蔚 0.4), the working hardening rate of the spherical pearlite is higher than that in the middle deformation stage (0.4 蔚 1.6). In the larger deformation stage (蔚 1.6), the effect of microstructure hardening on the distribution of carbide dispersion is more obvious. The results of deformation strengthening of spherical cementite ferrite biphasic materials show that after deformation, there are many high density dislocation entanglement regions in the grains, dislocation rings and dislocation entanglement around the carbides. In this way, the movement of subsequent dislocations is obstructed, and the working-hardening. 2) dislocations of materials are easier to form dislocation entanglement around large carbides, and the stress around them is more concentrated, so it is easier to form defects. 3) when the cementite is spherical, the carbides do not deform during deformation. Because of the serious dislocation accumulation and stress concentration around the cementite, defects are easy to occur in the microstructure. When the cementite is flake, the cementite can deform harmoniously with the matrix during the drawing process of the steel wire, but it is not easy to produce the defect in the microstructure. Therefore, the pullability of lamellar pearlite is better.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG356.46;TG162.85
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陶正耀;;鐵素體、滲碳體及材料強(qiáng)度[J];上海金屬(鋼鐵分冊(cè));1982年04期
2 羅倫科;中小球墨鑄鐵件滲碳體之成因和消除[J];中國(guó)鑄造裝備與技術(shù);1996年03期
3 呂知清;;鋼中滲碳體特性的理論計(jì)算與實(shí)驗(yàn)研究[J];材料導(dǎo)報(bào);2009年12期
4 劉永恒,,吳芬絨,田旭奎;45鋼缸套滲碳預(yù)冷淬火[J];熱加工工藝;1996年04期
5 林一堅(jiān);;熱激活條件下的變形誘導(dǎo)滲碳體溶解[J];寶鋼技術(shù);2014年01期
6 任晨輝;王伯健;;冷拉珠光體鋼絲中滲碳體的溶解行為[J];金屬熱處理;2011年06期
7 王冰輝,王再田;鋼中滲碳體的定量測(cè)定新方法[J];金屬材料與熱加工工藝;1982年06期
8 張國(guó)英,劉貴立,曾梅光,錢存富;新型G99高強(qiáng)高韌鋼中滲碳體的電子結(jié)構(gòu)[J];鋼鐵釩鈦;1999年03期
9 李光來,孟祥敏,張弗天,吳玉琨;9Ni鋼中滲碳體與馬氏體取向關(guān)系及相界結(jié)構(gòu)[J];材料研究學(xué)報(bào);1997年05期
10 王斌;劉振宇;馮潔;周曉光;王國(guó)棟;;超快冷對(duì)碳素鋼中滲碳體析出強(qiáng)化行為的影響[J];材料研究學(xué)報(bào);2014年05期
相關(guān)會(huì)議論文 前3條
1 張治民;馮再新;梁良;;溫度對(duì)20CrMnTi滲碳后變形特性影響的研究[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國(guó)科協(xié)2000年學(xué)術(shù)年會(huì)文集[C];2000年
2 萬寶意;劉宏玉;;冷拉珠光體鋼絲滲碳體分解機(jī)制及影響因素[A];全國(guó)金屬制品信息網(wǎng)第23屆年會(huì)暨2013金屬制品行業(yè)技術(shù)信息交流會(huì)論文集[C];2013年
3 吳孝庭;楊明月;麻先銀;馮肥興;;球鐵件套筒的滲碳體防止[A];安徽省機(jī)械工程學(xué)會(huì)成立50周年論文集[C];2014年
相關(guān)重要報(bào)紙文章 前1條
1 徐效謙;鋼絲的基本組織結(jié)構(gòu)與使用性能簡(jiǎn)介[N];世界金屬導(dǎo)報(bào);2011年
相關(guān)博士學(xué)位論文 前3條
1 王斌;超快速冷卻條件下碳素結(jié)構(gòu)鋼中滲碳體的納米化及球化行為的研究[D];東北大學(xué);2013年
2 陳明昕;新型有機(jī)物切削刀具材料的低溫二次硬化機(jī)理研究及滲碳體超細(xì)化的析出控制[D];昆明理工大學(xué);2009年
3 高揚(yáng);鋼中滲碳體表面特性及其合金化行為的密度泛函理論研究[D];燕山大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 李子瀟;低碳鋁鎮(zhèn)靜鋼在控軋控冷過程中滲碳體析出機(jī)理研究[D];華北理工大學(xué);2015年
2 謝駿;滲碳體的形態(tài)和分布對(duì)珠光體鋼絲拉拔形變及性能的影響[D];東南大學(xué);2015年
3 張群;塊狀合金滲碳體的制備及其性能研究[D];東南大學(xué);2015年
4 趙曉;鋼中滲碳體的冷變形與溶解機(jī)制[D];燕山大學(xué);2014年
5 孫浩;鋼中滲碳體溫變形機(jī)制分析[D];燕山大學(xué);2014年
6 馮潔;亞共析鋼中滲碳體納米化的成分與工藝設(shè)計(jì)[D];東北大學(xué);2014年
7 李忠芳;滲碳體磁性粉體的制備與性能研究[D];山東大學(xué);2012年
8 屈健;基于第一性原理研究重軌鋼中鈮對(duì)滲碳體結(jié)構(gòu)和力學(xué)性能的影響[D];內(nèi)蒙古科技大學(xué);2014年
9 王瑞敏;簾線鋼晶界滲碳體的控制研究[D];武漢科技大學(xué);2011年
10 王寶武;鐵素體鋼中滲碳體和富Cu相析出行為的第一性原理研究[D];上海大學(xué);2014年
本文編號(hào):1818866
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1818866.html