地鐵鋁合金牽引梁MIG焊接工藝分析及變形控制
本文選題:鋁合金 + 牽引梁; 參考:《哈爾濱工業(yè)大學(xué)》2015年碩士論文
【摘要】:地鐵的車體廣泛采用密度低、耐腐蝕的高強(qiáng)度鋁合金。由于鋁合金散熱快、熱膨脹系數(shù)大,極易產(chǎn)生較大的殘余變形,必須通過調(diào)校進(jìn)行矯正,從而制約了鋁合金構(gòu)件的焊接生產(chǎn)效率。本文針對地鐵鋁合金牽引梁構(gòu)件,借助數(shù)值模擬技術(shù)并與實(shí)驗(yàn)相結(jié)合,對傳統(tǒng)焊接工藝進(jìn)行優(yōu)化,達(dá)到控制焊接變形、提高生產(chǎn)效率的目的。首先,根據(jù)牽引梁構(gòu)件的結(jié)構(gòu)特點(diǎn)及質(zhì)量要求,分析牽引梁傳統(tǒng)MIG焊接方法的特點(diǎn)及不足,指出X型坡口焊縫采用非對稱的焊接順序等工藝條件是牽引梁焊接角變形產(chǎn)生的主要原因。其次,對典型平板試件進(jìn)行數(shù)值模擬,并通過平板試件的熔池形貌及熱循環(huán)曲線,對數(shù)值模擬的熱源模型進(jìn)行校核,確保采用的熱源模型的合理性。在此基礎(chǔ)上,對牽引梁的傳統(tǒng)焊接工藝進(jìn)行數(shù)值模擬研究,獲得牽引梁構(gòu)件的焊接變形,并與測量的實(shí)驗(yàn)結(jié)果進(jìn)行對比分析。按照傳統(tǒng)的焊接方法,牽引梁構(gòu)件的角變形在1.5°左右。最后,根據(jù)車間的實(shí)際情況,提出翻轉(zhuǎn)交叉焊、雙面雙弧焊和反變形法等三種優(yōu)化方案,并分別對三種方案進(jìn)行數(shù)值模擬仿真研究。通過對三種方案的對比分析,指出雙面雙弧與反變形為較好的工藝方案,且兩者組合為最佳的工藝方案,并對最佳工藝方案進(jìn)行焊接試驗(yàn)驗(yàn)證。結(jié)果表明,按此優(yōu)化方案,角變形能夠控制在合理范圍內(nèi),宏觀上可以忽略不計(jì),不影響牽引梁的平面度。研究成果已應(yīng)用于指導(dǎo)牽引梁構(gòu)件的實(shí)際焊接生產(chǎn),并配套設(shè)計(jì)制作了工裝夾具,合格率達(dá)到98%以上,提高了生產(chǎn)效率,降低了生產(chǎn)成本。地鐵鋁合金牽引梁焊接角變形的成功控制,對其他產(chǎn)品的工藝優(yōu)化積累了寶貴的經(jīng)驗(yàn)。
[Abstract]:High strength aluminum alloy with low density and corrosion resistance is widely used in the body of subway. Due to the rapid heat dissipation and large coefficient of thermal expansion of aluminum alloy, it is easy to produce large residual deformation, which must be corrected by adjustment, thus restricting the welding production efficiency of aluminum alloy components. In this paper, the traditional welding process is optimized with the aid of numerical simulation technology and experiment for the aluminum alloy traction beam of subway. The purpose of controlling welding deformation and improving production efficiency is achieved. First of all, according to the structural characteristics and quality requirements of the traction beam members, the characteristics and shortcomings of the traditional MIG welding method of the traction beam are analyzed. It is pointed out that the welding angle deformation of the traction beam is mainly caused by the unsymmetrical welding sequence of the X-groove weld. Secondly, the numerical simulation of typical plate specimen is carried out, and the heat source model of numerical simulation is checked through the molten pool morphology and thermal cycle curve of the plate specimen to ensure the rationality of the heat source model adopted. On this basis, the traditional welding process of the traction beam is studied by numerical simulation, and the welding deformation of the traction beam member is obtained, and the results are compared with the measured results. According to the traditional welding method, the angular deformation of the traction beam member is about 1.5 擄. Finally, according to the actual situation of the workshop, three optimization schemes are put forward, such as reverse cross welding, double-sided double-arc welding and reverse deformation method, and the numerical simulation and simulation of the three schemes are carried out respectively. Through the comparison and analysis of the three schemes, it is pointed out that the two sides double arc and reverse deformation are the better process plan, and the combination of the two is the best process plan, and the best process scheme is verified by welding test. The results show that the angle deformation can be controlled within a reasonable range according to the optimization scheme and the planeness of the tractive beam can be neglected in the macroscopic view without affecting the planeness of the traction beam. The research results have been applied to guide the actual welding production of the traction beam members, and the fixture has been designed and manufactured. The qualified rate is over 98%, which improves the production efficiency and reduces the production cost. The successful control of welding angle deformation of metro aluminum traction beam has accumulated valuable experience in optimizing other products.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U270.64;TG457.14
【參考文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前10條
1 鄭崇林;;淺談鋁材的焊接方法[J];農(nóng)技服務(wù);2014年03期
2 李湘軍;張益;;淺析城軌車輛鋁合金車體焊接工藝[J];科技創(chuàng)新與應(yīng)用;2013年16期
3 王艷飛;耿魯陽;鞏建鳴;蔣文春;;翻轉(zhuǎn)次數(shù)對20MnMoNb特厚管板焊接殘余應(yīng)力與變形影響的數(shù)值分析[J];焊接學(xué)報(bào);2012年10期
4 鄧勇強(qiáng);;焊接變形的影響因素與控制措施綜議[J];科技資訊;2012年23期
5 喬輝;;地鐵列車的結(jié)構(gòu)及構(gòu)造原理[J];科技信息;2012年04期
6 呂仲;韓巧珍;;鋼結(jié)構(gòu)焊接變形控制[J];電焊機(jī);2011年08期
7 李鵬;董俊慧;劉春蘭;;大型結(jié)構(gòu)焊接變形數(shù)值模擬的研究進(jìn)展[J];現(xiàn)代焊接;2011年02期
8 常軍;劉重金;牛小軍;;大型復(fù)雜結(jié)構(gòu)鋁筒焊接變形控制的研究[J];航天制造技術(shù);2010年02期
9 徐東;楊潤黨;王文榮;金燁;;船體結(jié)構(gòu)焊接變形預(yù)測與控制技術(shù)研究進(jìn)展[J];艦船科學(xué)技術(shù);2010年01期
10 高立;趙福辰;;雙面雙弧不清根厚板多層多道焊有限元數(shù)值模擬[J];熱加工工藝;2009年05期
中國博士學(xué)位論文全文數(shù)據(jù)庫 前1條
1 趙利華;機(jī)車構(gòu)架側(cè)梁焊接數(shù)值仿真與變形控制[D];西南交通大學(xué);2012年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前2條
1 王巖;Al-Mg-Si 6082合金MIG焊焊接應(yīng)力與變形的數(shù)值模擬分析[D];中南林業(yè)科技大學(xué);2012年
2 翁路露;隨焊旋轉(zhuǎn)擠壓工藝控制應(yīng)力變形的研究[D];哈爾濱工業(yè)大學(xué);2008年
,本文編號:1796567
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1796567.html