寬幅鎂合金薄板大壓下軋制溫度場(chǎng)變化規(guī)律的研究
發(fā)布時(shí)間:2018-04-23 13:40
本文選題:寬幅AZ31 + 大壓下軋制 ; 參考:《燕山大學(xué)》2015年碩士論文
【摘要】:航空、航天、武器裝備、大型船舶和高速列車的輕量化需求對(duì)寬幅鎂合金板材及其組合件代替鋼板和塑料的需求量將越來(lái)越大,因此開(kāi)發(fā)大尺寸寬幅鎂合金板材具有重要的戰(zhàn)略意義。鎂合金板帶軋制是研究變形鎂合金中的重要方向,以較高的軋制溫度來(lái)進(jìn)行大壓下率軋制,使鎂合金在軋制中產(chǎn)生完全動(dòng)態(tài)再結(jié)晶,以此來(lái)得到組織均勻細(xì)小和力學(xué)性能優(yōu)良的產(chǎn)品,這樣既提高了生產(chǎn)效率,又降低了生產(chǎn)成本,具有比較高的現(xiàn)實(shí)意義。且溫度是鎂合金板帶軋制過(guò)程中最重要的工藝參數(shù),直接影響著軋制時(shí)金屬的動(dòng)態(tài)再結(jié)晶過(guò)程以及塑性變形機(jī)制,從而影響其最終組織和性能。因此研究板帶在軋制過(guò)程中的溫度變化和內(nèi)部溫度分布規(guī)律是保證軋制成品質(zhì)量的前提。在軋制過(guò)程中,有必要調(diào)整并且控制好軋制溫度以此來(lái)得到符合性能要求的成品。本課題的研究目的就是運(yùn)用實(shí)驗(yàn)法以及數(shù)值模擬法對(duì)寬幅鎂合金薄板大壓下率軋制過(guò)程中溫度場(chǎng)的變化規(guī)律進(jìn)行研究。利用Gleeble-3800熱模擬試驗(yàn)機(jī),進(jìn)行高溫壓縮熱模擬實(shí)驗(yàn),得到流變應(yīng)力曲線,為后續(xù)有限元軟件模擬軋制過(guò)程以及理論分析提供可靠數(shù)據(jù)支持。并且進(jìn)行平面應(yīng)變壓縮實(shí)驗(yàn),模擬軋制過(guò)程。通過(guò)金相試驗(yàn),測(cè)試在不同壓下率以及軋制溫度下軋制后試樣的組織變化規(guī)律,得到鎂合金的最佳軋制工藝參數(shù)。運(yùn)用MSC.Marc建立三維軋制模型對(duì)鎂合金薄板軋制過(guò)程軋制溫度、壓下率、軋輥預(yù)熱溫度以及板帶寬度等不同工藝參數(shù)進(jìn)行數(shù)值模擬,初步探析研究鎂合金軋制較適合的壓下率。然后分析大壓下率軋制過(guò)程中溫度場(chǎng)沿板帶寬度方向的變化規(guī)律,研究鎂合金板帶軋制過(guò)程中的傳熱機(jī)理,建立溫度模型以對(duì)鎂合金熱軋進(jìn)行最優(yōu)溫度控制。針對(duì)軋制過(guò)程中板帶邊部溫降的現(xiàn)象,并改善由于邊部溫降引起的邊裂問(wèn)題,提出板帶邊部感應(yīng)加熱來(lái)達(dá)到邊部溫度回升,對(duì)板帶邊部溫度進(jìn)行補(bǔ)償,并建立電磁熱耦合模型來(lái)分析邊部溫度變化。
[Abstract]:The demand for lightweight aerospace, aerospace, weapons, large ships and high-speed trains will be increasing for wide-width magnesium alloy sheets and their assemblies instead of steel plates and plastics. Therefore, the development of large-size and wide-width magnesium alloy sheet has important strategic significance. The rolling of magnesium alloy strip is an important direction in the research of wrought magnesium alloy. With high rolling temperature, the rolling of magnesium alloy can produce complete dynamic recrystallization. In this way, the products with fine and uniform structure and excellent mechanical properties can be obtained, which not only improves the production efficiency but also reduces the production cost, so it has higher practical significance. The temperature is the most important technological parameter in the rolling process of magnesium alloy sheet and strip, which directly affects the dynamic recrystallization process and plastic deformation mechanism of the metal during rolling, thus affecting the final microstructure and properties. Therefore, it is the premise to study the temperature change and internal temperature distribution in the rolling process to ensure the quality of the finished product. In the process of rolling, it is necessary to adjust and control the rolling temperature to get the finished product. The purpose of this paper is to study the variation of temperature field in the process of high reduction rate rolling of wide magnesium alloy sheet by means of experimental method and numerical simulation method. The flow stress curve is obtained by using Gleeble-3800 thermal simulation machine to simulate the high temperature compression heat, which provides reliable data for the subsequent finite element software to simulate the rolling process and theoretical analysis. And the plane strain compression experiment was carried out to simulate the rolling process. By means of metallographic test, the microstructure changes of the samples after rolling at different reduction rates and rolling temperatures were measured, and the optimum rolling process parameters of magnesium alloys were obtained. The rolling temperature, reduction rate, roll preheating temperature and strip width of magnesium alloy sheet were numerically simulated by MSC.Marc. The suitable rolling rate of magnesium alloy rolling was studied. Then, the variation law of temperature field along the width of strip during high reduction rate rolling is analyzed, the heat transfer mechanism in the rolling process of magnesium alloy strip is studied, and the temperature model is established to control the optimal temperature of hot rolling of magnesium alloy. In view of the phenomenon of temperature drop on the edge of the strip during rolling, and to improve the edge crack caused by the temperature drop of the edge, it is put forward that the induction heating of the edge of the strip is used to recover the temperature of the edge, and the temperature of the edge of the plate is compensated. An electromagnetic-thermal coupling model is established to analyze the temperature variation of the edge.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG339
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 張丁非;方霖;劉郭平;戴慶偉;;鎂合金板材軋制技術(shù)與工藝的研究進(jìn)展[J];兵器材料科學(xué)與工程;2010年05期
2 張鵬,鹿守理,高永生,趙輝,趙俊萍,,曹輝;板帶軋制過(guò)程溫度場(chǎng)有限元模擬及影響因素分析(Ⅱ)[J];北京科技大學(xué)學(xué)報(bào);1998年01期
3 杜文博;吳玉鋒;左鐵鏞;;鎂合金在交通工具中的應(yīng)用現(xiàn)狀[J];世界有色金屬;2006年02期
4 松野弘;徐永恒;;關(guān)于在大壓下軋制時(shí)咬入性和軋制穩(wěn)定性的理論研究[J];鞍山鋼鐵學(xué)院學(xué)報(bào);1985年01期
5 孫仁孝,周一林;攀鋼冷軋廠HC連軋機(jī)組大壓下率軋制研究[J];四川冶金;1999年05期
6 張丁非;戴慶偉;方霖;張鈞萍;;溫度梯度對(duì)鎂合金板材軋制影響的數(shù)值模擬[J];中國(guó)科技論文在線;2009年11期
7 余琨;王曉艷;蔡志勇;王日初;史
本文編號(hào):1792201
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1792201.html
最近更新
教材專著