天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 金屬論文 >

熱擠壓AZ31鎂合金單向壓縮變形的應(yīng)變硬化行為

發(fā)布時(shí)間:2018-03-14 11:20

  本文選題:AZ鎂合金 切入點(diǎn):拉伸孿生 出處:《中國(guó)有色金屬學(xué)報(bào)》2015年05期  論文類型:期刊論文


【摘要】:對(duì)AZ31鎂合金熱擠壓棒材在室溫下沿?cái)D壓方向分別進(jìn)行了應(yīng)變?yōu)?%、6%、10%的單向壓縮實(shí)驗(yàn)。利用OM、XRD和EBSD等技術(shù)研究了不同壓縮應(yīng)變量下的顯微組織、織構(gòu)及應(yīng)變硬化的演變特征。結(jié)果表明:具有{0002}纖維織構(gòu)的熱擠壓態(tài)AZ31鎂合金沿著擠出方向壓縮時(shí),產(chǎn)生顯著的應(yīng)變硬化效應(yīng)。其塑性變形可大致分為3個(gè)階段:初始階段主要發(fā)生{1012}拉伸孿生,表現(xiàn)為較低的應(yīng)變硬化速率和應(yīng)變硬化速率的急劇減小;隨著壓縮應(yīng)變量的增加,孿晶界逐漸擴(kuò)展,直至部分晶粒發(fā)生完全孿生,基面織構(gòu)強(qiáng)度逐漸增強(qiáng);拉伸孿晶生長(zhǎng)所造成的強(qiáng){0002}基面織構(gòu)是產(chǎn)生高應(yīng)變硬化速率的主要原因;應(yīng)變硬化速率第Ⅱ~Ⅲ階段的轉(zhuǎn)折點(diǎn)大致與拉伸孿晶的生長(zhǎng)停滯相對(duì)應(yīng)。
[Abstract]:Unidirectional compression experiments of AZ31 magnesium alloy hot extruded bar with strain of 3% and 10% along extrusion direction were carried out at room temperature. The microstructure of hot extruded bar under different compression strain was studied by OMXRD and EBSD techniques. The evolution of texture and strain hardening. The results show that the hot extruded AZ31 magnesium alloy with {0002} fiber texture is compressed along the extrusion direction. The plastic deformation can be divided into three stages: at the initial stage, {1012} tensile twinning mainly occurs, which shows that the lower strain hardening rate and strain hardening rate decrease sharply, and with the increase of compression strain, The twinning boundary gradually expands until some of the grains are completely twinned and the basic texture strength increases gradually, and the strong {0002} basal texture caused by the tensile twin growth is the main reason for the high strain hardening rate. The turning point of strain hardening rate stage 鈪,

本文編號(hào):1610996

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1610996.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶aa933***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com