基于多目標(biāo)粒子群的數(shù)控機(jī)床維修調(diào)度決策支持系統(tǒng)研究
本文關(guān)鍵詞: 多目標(biāo)粒子群 維修調(diào)度 數(shù)控機(jī)床 決策支持 出處:《武漢科技大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著制造技術(shù)的飛速發(fā)展,數(shù)控機(jī)床作為當(dāng)代機(jī)械制造業(yè)的主流設(shè)備,其結(jié)構(gòu)日趨復(fù)雜,自動(dòng)化、智能化水平逐漸提高,使得其維修工作變得日益復(fù)雜和繁重。如何在減少影響生產(chǎn)的情況下,快速?zèng)Q策出有效的數(shù)控機(jī)床維修調(diào)度方案,使企業(yè)綜合效益最大化,具有重要的現(xiàn)實(shí)意義。論文以數(shù)控機(jī)床維修調(diào)度為研究對(duì)象,利用多目標(biāo)粒子群算法、偏好信息、維修調(diào)度等知識(shí),完成了數(shù)控機(jī)床維修調(diào)度模型的構(gòu)建、架構(gòu)分析、實(shí)例分析求解、系統(tǒng)設(shè)計(jì)等工作,主要工作如下: (1)數(shù)控機(jī)床維修調(diào)度故障知識(shí)采集。對(duì)某維檢中心的數(shù)據(jù)調(diào)研情況進(jìn)行總結(jié),從數(shù)控機(jī)床故障分類、常見故障及排除、維修工時(shí)定額三個(gè)方面介紹了數(shù)控機(jī)床維修調(diào)度知識(shí)的來源,為后面的數(shù)控機(jī)床維修調(diào)度決策提供知識(shí)資源。 (2)數(shù)控機(jī)床維修調(diào)度模型構(gòu)建。以數(shù)控機(jī)床維修調(diào)度為對(duì)象,根據(jù)實(shí)際生產(chǎn)情況和提高數(shù)控機(jī)床維修效率的要求,綜合運(yùn)用數(shù)控機(jī)床故障維修知識(shí)、調(diào)度理論與方法,構(gòu)建了基于時(shí)間和成本的雙目標(biāo)數(shù)控機(jī)床維修調(diào)度模型。在前人維修調(diào)度問題的基礎(chǔ)上,新增了工人技術(shù)水平影響因子,建立了更適合企業(yè)實(shí)際的維修調(diào)度模型。 (3)數(shù)控機(jī)床維修調(diào)度模型求解算法確定。分析維修調(diào)度問題的目標(biāo)、約束條件等,確定了基于后驗(yàn)偏好信息的滿意解優(yōu)選方法。仿真結(jié)果與原有稀缺度維修調(diào)度法相比,取得了較好的優(yōu)化效果,為維修調(diào)度方案選擇提供可靠依據(jù)。 (4)維修調(diào)度決策支持系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)。采用B/S架構(gòu),以Java開發(fā)語言,基于Extjs4.0、Struts2、Hibernate、Spring等,,開發(fā)了數(shù)控機(jī)床維修調(diào)度決策支持原型系統(tǒng)。系統(tǒng)主要包括用戶管理、機(jī)床運(yùn)行與維修管理、決策支持系統(tǒng)管理、機(jī)床維修調(diào)度決策等模塊。
[Abstract]:With the rapid development of manufacturing technology, CNC machine tools, as the mainstream equipment in the contemporary mechanical manufacturing industry, are becoming more and more complex, and the level of automation and intelligence is gradually improving. The maintenance work becomes more and more complex and heavy. How to make the effective maintenance and scheduling scheme of NC machine tool quickly under the condition of reducing the influence on production, so as to maximize the comprehensive benefit of the enterprise. This paper takes the maintenance scheduling of CNC machine tools as the research object, using the knowledge of multi-objective particle swarm optimization, preference information, maintenance scheduling and so on, completes the construction and architecture analysis of the maintenance scheduling model of NC machine tools. Example analysis and solution, system design and other work, the main work is as follows:. 1) acquisition of fault knowledge in maintenance and dispatching of NC machine tools. The data investigation and investigation of a maintenance inspection center are summarized, and the classification, common faults and troubleshooting of NC machine tools are summarized. This paper introduces the source of NC machine tool maintenance scheduling knowledge from three aspects of maintenance man-hour quota, and provides knowledge resources for NC machine tool maintenance scheduling decision. (2) Construction of NC machine tool maintenance scheduling model. Taking NC machine tool maintenance scheduling as an object, according to the actual production situation and the requirement of improving NC machine tool maintenance efficiency, this paper synthetically applies NC machine tool fault maintenance knowledge, scheduling theory and method. Based on the previous maintenance and scheduling problems, the maintenance scheduling model of double-objective NC machine tools based on time and cost is established. Based on the former maintenance scheduling problems, the influence factors of workers' technical level are added, and a maintenance scheduling model is established, which is more suitable for enterprises. 3) the algorithm for solving the maintenance scheduling model of NC machine tools is determined. The objectives and constraints of the maintenance scheduling problem are analyzed, and the satisfactory optimization method based on the posteriori preference information is determined. The simulation results are compared with the original scarcity degree maintenance scheduling method. Good optimization results are obtained and reliable basis is provided for the selection of maintenance scheduling scheme. 4) the design and implementation of maintenance scheduling decision support system. Based on Extjs4.0 Struts2hibernateSpring and Java development language, a decision support system for maintenance scheduling of NC machine tools is developed. The system mainly includes user management, machine tool operation and maintenance management, etc. Decision support system management, machine tool maintenance scheduling decision-making module.
【學(xué)位授予單位】:武漢科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TG659
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 侯磊;;基于多目標(biāo)粒子群算法的船舶主尺度優(yōu)化設(shè)計(jì)研究[J];船舶力學(xué);2011年07期
2 李紅良;;智能決策支持系統(tǒng)的發(fā)展現(xiàn)狀及應(yīng)用展望[J];重慶工學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年10期
3 王憲;張方生;慕鑫;柳絮青;郭玉凡;;基于多目標(biāo)粒子群算法的多傳感器圖像融合[J];光電工程;2012年06期
4 賴建峰;林永怡;;淺談服務(wù)器集群技術(shù)在數(shù)字化校園中的應(yīng)用[J];硅谷;2011年09期
5 鞏敦衛(wèi);王更星;孫曉燕;;高維多目標(biāo)優(yōu)化問題融入決策者偏好的集合進(jìn)化優(yōu)化方法[J];電子學(xué)報(bào);2014年05期
6 田雨波;樓群;邱大為;;多目標(biāo)神經(jīng)空間映射算法優(yōu)化設(shè)計(jì)微帶濾波器[J];電子學(xué)報(bào);2014年05期
7 胡丹丹;陳寧江;朱莉蓉;譚瑛;李湘;;云基礎(chǔ)設(shè)施利潤驅(qū)動(dòng)的多目標(biāo)虛擬機(jī)資源調(diào)度[J];廣西大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期
8 呂學(xué)志;陳樂;尹健;范保新;;考慮休息的維修任務(wù)調(diào)度模型及其求解算法[J];兵工學(xué)報(bào);2014年12期
9 張爽;馬慧民;馬良;許圣良;;半導(dǎo)體制造設(shè)備預(yù)維修調(diào)度的知識(shí)進(jìn)化算法研究[J];計(jì)算機(jī)應(yīng)用研究;2011年06期
10 任永昌;巫奎彥;王娟;;基于時(shí)間測(cè)定法的工時(shí)定額標(biāo)準(zhǔn)化研究[J];價(jià)值工程;2010年19期
本文編號(hào):1522576
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1522576.html