大直徑厚壁壓力氣瓶熱處理過程數(shù)值模擬與實(shí)驗(yàn)研究
本文關(guān)鍵詞: 壓力氣瓶 熱處理 Q-P工藝 Q-P(-T)工藝 出處:《燕山大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:大直徑厚壁壓力氣瓶承載壓力高,長期工作在“加載—卸載”的疲勞環(huán)境中。天然氣鋼瓶發(fā)生爆炸事故的主要原因之一就是氣瓶在熱處理生產(chǎn)過程后的殘余應(yīng)力水平過高。由于大直徑厚壁壓力氣瓶具有尺寸大、質(zhì)量大的特點(diǎn),其熱處理工藝往往十分復(fù)雜。淬火 回火過程是大直徑厚壁壓力氣瓶熱處理工藝中最為重要的環(huán)節(jié),對其最終質(zhì)量和使用性能起著至關(guān)重要的作用。數(shù)值模擬技術(shù)可以準(zhǔn)確逼真的模擬淬火 回火工藝生產(chǎn),預(yù)測熱處理后工件質(zhì)量,為大直徑厚壁壓力氣瓶的調(diào)質(zhì)工藝制定與生產(chǎn)工藝優(yōu)化提供了一種有效研究方法。首先,本文通過查閱文獻(xiàn)獲得了30Cr Mo鋼的高溫力學(xué)性能以及30Cr Mo鋼中不同組織在不同溫度下的比熱和常溫密度,并給出了材料的TTT曲線和CCT曲線,為數(shù)值模擬研究提供了可靠的基礎(chǔ)數(shù)據(jù)。接著,考慮了大直徑厚壁壓力氣瓶在熱處理過程中溫度-組織-應(yīng)力三者間的相互耦合關(guān)系,變物性參數(shù)、相變潛熱、相變塑性等因素對調(diào)質(zhì)生產(chǎn)過程的影響,建立了大直徑厚壁壓力氣瓶熱處理過程的數(shù)學(xué)模型。并利用CAD和CAE軟件,建立了大直徑厚壁壓力氣瓶的三維幾何模型和有限元模型。進(jìn)而利用有限元軟件分析平臺DEFORM,結(jié)合實(shí)際熱處理生產(chǎn)工藝特點(diǎn),對大直徑厚壁壓力氣瓶的傳統(tǒng)淬火-回火(Q-T)淬火過程,設(shè)計(jì)了“內(nèi)表面間歇徑向噴霧外表面連續(xù)噴水”和“內(nèi)外表面同步間歇噴霧”兩種淬火工藝,并進(jìn)行了數(shù)值模擬計(jì)算,分析了傳統(tǒng)淬火-回火過程中氣瓶內(nèi)特征節(jié)點(diǎn)的溫度、組織和應(yīng)力的變化情況。然后,針對氣瓶使用過程中強(qiáng)度滿足但韌性不足的特點(diǎn),提出對大直徑厚壁壓力氣瓶進(jìn)行新型Q-P和Q-P-T熱處理工藝方案,并對新型工藝下氣瓶的溫度和應(yīng)力演變情況進(jìn)行了數(shù)值模擬分析。幾種工藝模的數(shù)值擬分析結(jié)果表明,四種熱處理工藝淬火過程可以不同程度調(diào)節(jié)瓶體截面的溫度梯度及瓶內(nèi)氣壓,降低淬火應(yīng)力,保證瓶體完全淬透,最終熱處理后獲得不同程度的殘余應(yīng)力。最后,通過拉伸試驗(yàn)、掃描電鏡、XRD實(shí)驗(yàn),驗(yàn)證了有限元分析模型的有效性,分析了各工藝的優(yōu)缺點(diǎn),并根據(jù)氣瓶使用要求和各工藝參數(shù)特點(diǎn)確定了最佳工藝。
[Abstract]:The pressure cylinder with large diameter and thick wall has high bearing pressure. Long term work in "load-unload" In the fatigue environment, one of the main reasons for the explosion accident of natural gas cylinder is that the residual stress level of gas cylinder after heat treatment is too high. The process of quenching and tempering is the most important part in the heat treatment process of large-diameter thick-wall pressure gas cylinder. Numerical simulation technology can accurately simulate quenching and tempering process and predict the quality of workpiece after heat treatment. It provides an effective research method for the development of tempering process and optimization of production process for large-diameter thick-wall pressure cylinder. First of all. In this paper, the high temperature mechanical properties of 30CrMo steel and the specific heat and normal temperature density of different microstructure in 30CrMo steel at different temperatures were obtained. The TTT curves and CCT curves of the materials are given, which provide reliable basic data for the numerical simulation. The coupling relationship between temperature, microstructure and stress, the variable physical parameters, the latent heat of phase transformation and the plastic transformation of the large-diameter thick-wall pressure gas cylinder during heat treatment were taken into account in the process of tempering and tempering. The mathematical model of the heat treatment process of the large-diameter thick-wall pressure cylinder was established, and the software CAD and CAE were used. The three-dimensional geometry model and finite element model of the large-diameter thick-wall pressure cylinder are established, and then the finite element software platform deform is used to combine the characteristics of the actual heat treatment production process. For the traditional quenching and tempering Q-T quenching process of large-diameter thick-wall pressure cylinder, two quenching processes, "intermittent radial spray external surface continuous water spray" and "internal and external surface synchronous intermittent spray", were designed. The change of temperature, microstructure and stress of the characteristic node in the gas cylinder during the traditional quenching and tempering process is analyzed. In view of the characteristic that the strength is satisfied but the toughness is insufficient during the use of the gas cylinder, a new type of Q-P and Q-P-T heat treatment process for the large-diameter thick-wall pressure cylinder is put forward. The temperature and stress evolution of the gas cylinder under the new process are simulated and analyzed. The numerical simulation results of several process models show that. The quenching process of four heat treatment processes can adjust the temperature gradient of the bottle cross section and the air pressure in the bottle to varying degrees, reduce the quenching stress, and ensure the complete quenching of the bottle body. After the final heat treatment, different degrees of residual stress were obtained. Finally, the validity of the finite element analysis model was verified by tensile test and SEM XRD test, and the advantages and disadvantages of each process were analyzed. The optimum process is determined according to the requirements of the cylinder and the characteristics of each process parameter.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TG161
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李強(qiáng),王葛,陳乃路;淬冷過程工件溫度場的計(jì)算機(jī)模擬與實(shí)驗(yàn)[J];燕山大學(xué)學(xué)報(bào);2002年04期
2 劉曉霏;;熱處理淬火過程計(jì)算機(jī)模擬的現(xiàn)狀與展望[J];工業(yè)加熱;2008年03期
3 張紅星;江華生;;車用壓縮天然氣氣瓶的研究概況[J];石油和化工設(shè)備;2011年10期
4 胡明娟,,潘健生,李兵,田東;界面條件劇變的淬火過程三維溫度場的計(jì)算機(jī)模擬[J];金屬熱處理學(xué)報(bào);1996年S1期
5 李勇軍,潘健生,顧劍鋒,胡明娟,張幸,于文平;70Cr3Mo鋼大型支承輥淬火加熱計(jì)算機(jī)模擬[J];金屬熱處理;2000年09期
6 杜鳳山;張芳;黃華貴;李廣睿;;大型鍛件噴霧冷卻過程數(shù)值模擬[J];金屬熱處理;2008年05期
7 潘健生;顧劍鋒;王婧;;我國熱處理發(fā)展戰(zhàn)略的探討[J];金屬熱處理;2013年01期
8 趙洪壯,許紅,劉相華,王國棟;熱處理過程數(shù)值模擬綜述[J];熱處理;2004年01期
9 田東,胡明娟,潘健生;T8 鋼淬火過程三維溫度場計(jì)算及實(shí)驗(yàn)[J];上海交通大學(xué)學(xué)報(bào);1998年02期
10 張亦良,徐學(xué)東,葛森;高壓氣瓶工藝殘余應(yīng)力測試和分析[J];實(shí)驗(yàn)力學(xué);2004年02期
相關(guān)重要報(bào)紙文章 前2條
1 谷力功;[N];世界金屬導(dǎo)報(bào);2010年
2 王允剛 陳濤 李萍 盧明亮;[N];世界金屬導(dǎo)報(bào);2012年
相關(guān)博士學(xué)位論文 前1條
1 左訓(xùn)偉;水-空交替控時(shí)淬火冷卻設(shè)備的研究與應(yīng)用[D];上海交通大學(xué);2010年
相關(guān)碩士學(xué)位論文 前4條
1 王曉燕;低壓轉(zhuǎn)子淬火工藝過程數(shù)值模擬的研究[D];上海交通大學(xué);2011年
2 蔡九茂;高壓氣瓶收口塑性成形數(shù)值模擬與缺陷預(yù)測[D];華東理工大學(xué);2012年
3 王同珍;淬火過程的計(jì)算機(jī)模擬[D];燕山大學(xué);2004年
4 李康;鋼件噴水淬火冷卻過程的有限元建模及溫度場預(yù)測[D];太原理工大學(xué);2006年
本文編號:1461708
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1461708.html