基于掃描電子顯微鏡的納米切削機(jī)理研究
本文關(guān)鍵詞: 納米切削 納米精度運動裝置 掃描電子顯微鏡 金剛石刀具 表面完整性 出處:《天津大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:納米切削技術(shù)近年來得到了迅速發(fā)展,納米切削推擠機(jī)理的揭示,為切削理論的研究開辟了更加廣闊的研究領(lǐng)域;谛聶C(jī)理的一系列核心問題的探索,成為制造領(lǐng)域亟待解決的重要課題。目前對納米切削機(jī)理的研究主要基于超精密機(jī)床加工、原子力顯微鏡探針刻劃、分子動力學(xué)模擬以及自主研發(fā)的納米切削系統(tǒng)來開展。然而,上述方法對于納米切削機(jī)理的深入研究存在著明顯不足。因此本文基于納米切削機(jī)理研究中亟需實驗驗證的現(xiàn)狀,開展了一系列的實驗探索,具體內(nèi)容如下:(1)研制了基于掃描電子顯微鏡的原位納米切削系統(tǒng)。該系統(tǒng)能實現(xiàn)直線、斜線、正弦曲線等多自由度切削的精確控制及在線觀測,有利于更直觀地研究納米切削機(jī)理。利用聚焦離子束加工技術(shù)對單晶金剛石刀具進(jìn)行加工,制備出不同刃口半徑的直線刃刀具。(2)對納米切削系統(tǒng)的定位精度、剛度、可重復(fù)性、蠕變漂移特性以及極限切削能力進(jìn)行了測試;趫D像處理手段對納米切削系統(tǒng)進(jìn)行了雙閉環(huán)反饋控制,修正該系統(tǒng)的蠕變漂移。輸入切削厚度為10 nm、50 nm、100 nm時,實際切削厚度分別為10.6 nm、54.9 nm、105.4 nm。結(jié)果表明,該切削系統(tǒng)能夠?qū)崿F(xiàn)納米級加工精度,滿足納米切削加工要求。(3)研究了切削厚度對單晶銅材料切屑形態(tài)的影響,發(fā)現(xiàn)當(dāng)切削厚度小于40 nm時,沒有形成傳統(tǒng)切削時明顯的剪切帶,而當(dāng)切削厚度約為50 100 nm時,屬于剪切去除和推擠去除的臨界區(qū)域。分析了晶體取向、刃口半徑以及切削速度對單晶硅脆塑轉(zhuǎn)變臨界厚度的影響規(guī)律。通過對切屑變形的測量,研究了切削速度和刀具刃口對切削變形的影響規(guī)律。對不同刀具刃口條件下的最小切削厚度進(jìn)行了研究,發(fā)現(xiàn)最小切削厚度隨刀具刃口的增大而增大,并且二者比值介于0.36 0.51之間。(4)通過顯微拉曼光譜分析了單晶硅材料的納米切削表面完整性,發(fā)現(xiàn)在納米切削過程中,存在著晶態(tài)轉(zhuǎn)變和相變。對硅片切屑的測試結(jié)果表明,單晶硅轉(zhuǎn)變?yōu)榉蔷Ч韬投嗑Ч?而多晶硅占主要成分。研究了切削參數(shù)對單晶銅和單晶硅亞表面損傷層厚度、殘余應(yīng)力、晶態(tài)變化、相變等的影響規(guī)律。
[Abstract]:Nano-cutting technology has been developed rapidly in recent years. The discovery of the mechanism of nano-cutting pushing and extrusion has opened up a broader research field for the research of cutting theory and a series of core problems based on new mechanism have been explored. At present, the research on the mechanism of nano-cutting is mainly based on ultra-precision machine tool processing and atomic force microscope (AFM) probe description. Molecular dynamics simulations and home-grown nanoscale cutting systems. The above methods have obvious shortcomings for the further study of nano-cutting mechanism. Therefore, based on the current situation of the research of nano-cutting mechanism, which needs to be verified by experiments, a series of experimental exploration has been carried out in this paper. The main contents are as follows: (1) A scanning electron microscope (SEM) based in situ nanoscale cutting system is developed. The system can realize the precise control and on-line observation of straight lines, sloping lines, sinusoidal curves and other multi-degree-of-freedom cutting. It is helpful to study the mechanism of nanoscale cutting more intuitively. The focused ion beam machining technology is used to process single crystal diamond tools. The positioning accuracy, stiffness and repeatability of the linear cutting tool with different cutting edge radius were prepared. The creep drift characteristic and the limit cutting ability were tested. Based on the image processing method, the double closed loop feedback control was carried out to correct the creep drift of the system. The input cutting thickness was 10 nm. The actual cutting thickness is 10.6 nm ~ 54.9 nm ~ 105.4 nm at 100 nm. The results show that the cutting system can achieve nanoscale machining accuracy. The effect of cutting thickness on the chip morphology of single crystal copper is studied. It is found that when the cutting thickness is less than 40 nm, there is no obvious shear band when the cutting thickness is less than 40 nm. When the cutting thickness is about 50 ~ 100nm, it belongs to the critical region of shearing and squeezing removal. The crystal orientation is analyzed. The influence of cutting radius and cutting speed on the critical thickness of brittle plastic transition of monocrystalline silicon is studied. The chip deformation is measured. The influence of cutting speed and cutting edge on cutting deformation is studied. The minimum cutting thickness under different cutting edge conditions is studied. It is found that the minimum cutting thickness increases with the increase of cutting edge. And the ratio of the two is between 0.36 and 0.51.) the surface integrity of monocrystalline silicon is analyzed by Raman spectroscopy, and it is found that it is in the process of nanocrystalline cutting. There are crystal state transition and phase transition. The results of silicon chip chip test show that monocrystalline silicon is transformed into amorphous silicon and polysilicon. The effect of cutting parameters on the thickness, residual stress, crystal state change and phase transition of subsurface damage layer of single crystal copper and monocrystalline silicon were studied.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:TG501
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 閆雪;陶華;蔡晉;李海濱;;基于真實刀刃軌跡的立銑刀切削厚度模型[J];機(jī)械工程學(xué)報;2011年01期
2 武麗清;楊永福;;切削厚度對竹材刨切質(zhì)量影響的研究[J];木材加工機(jī)械;2006年01期
3 吳繼華;史振宇;;基于應(yīng)變梯度理論的正交微車削中最小切削厚度預(yù)測[J];中國機(jī)械工程;2009年18期
4 劉才鼎;國產(chǎn)綜機(jī)和綜采面的可靠生產(chǎn)能力[J];煤礦設(shè)計;1981年05期
5 沈中;孫暄;劉鋼;陳明;;基于平均切削厚度鈦合金TC4銑削機(jī)理[J];上海交通大學(xué)學(xué)報;2007年04期
6 陳日曜,盧文祥;在鋼料薄層切削下切削厚度與切削速度對已加工表面狀態(tài)的影響[J];工具技術(shù);1980年01期
7 陳浩鋒;王建敏;戴一帆;鄭子文;彭小強(qiáng);;基于螺旋刻劃方法的KDP晶體臨界切削厚度研究[J];人工晶體學(xué)報;2011年01期
8 張棉好;朱春耕;劉智強(qiáng);汪紅波;;微銑削切削厚度模型的研究[J];機(jī)械制造;2010年09期
9 耿海彬;;徑向變薄切削與切削厚度控制——提升航空結(jié)構(gòu)件加工效率的GibbsCAM軟件[J];金屬加工(冷加工);2011年20期
10 鞠培貴,宋孔杰,張進(jìn)生;切削過程動特性研究[J];山東機(jī)械;1996年03期
相關(guān)會議論文 前1條
1 鄧昀;李亮;何寧;趙孟;;基于SPH法的微細(xì)切削最小切削厚度的研究[A];2010年“航空航天先進(jìn)制造技術(shù)”學(xué)術(shù)交流論文集[C];2010年
相關(guān)博士學(xué)位論文 前1條
1 劉冰;基于掃描電子顯微鏡的納米切削機(jī)理研究[D];天津大學(xué);2015年
相關(guān)碩士學(xué)位論文 前2條
1 孫婉婷;金剛石飛切最小切削厚度預(yù)測的研究[D];吉林大學(xué);2011年
2 鄧昀;基于SPH法的微細(xì)切削模擬研究[D];南京航空航天大學(xué);2011年
,本文編號:1454112
本文鏈接:http://sikaile.net/kejilunwen/jinshugongy/1454112.html