列車(chē)—軌道—橋梁耦合系統(tǒng)動(dòng)力方程求解方法對(duì)計(jì)算精度和效率的影響
發(fā)布時(shí)間:2019-06-30 20:26
【摘要】:基于輪軌Hertz接觸模型,分別建立列車(chē)—軌道—橋梁垂向耦合系統(tǒng)的分離迭代法和耦合時(shí)變法的系統(tǒng)動(dòng)力方程。根據(jù)系統(tǒng)最高頻率以及譜半徑理論分析這2種系統(tǒng)動(dòng)力方程對(duì)時(shí)間積分步長(zhǎng)的要求以及在計(jì)算收斂性方面的差別;以8輛車(chē)編組的高速列車(chē)通過(guò)5跨簡(jiǎn)支梁橋?yàn)槔?對(duì)比這2種系統(tǒng)動(dòng)力方程的計(jì)算精度,并分析耦合時(shí)變系統(tǒng)動(dòng)力方程不同時(shí)間積分步長(zhǎng)對(duì)不同動(dòng)力響應(yīng)指標(biāo)計(jì)算精度的影響規(guī)律。結(jié)果表明:分離迭代法系統(tǒng)動(dòng)力方程受積分步內(nèi)迭代穩(wěn)定性和計(jì)算精度的雙重控制,其時(shí)間積分步長(zhǎng)必須小于0.2ms;而耦合時(shí)變法系統(tǒng)動(dòng)力方程則允許采用較大的時(shí)間積分步長(zhǎng),但不同動(dòng)力響應(yīng)指標(biāo)的計(jì)算精度受時(shí)間積分步長(zhǎng)的影響不同,其中,鋼軌位移、車(chē)體振動(dòng)加速度、橋梁位移以及輪軌垂向力等指標(biāo)對(duì)時(shí)間積分步長(zhǎng)的變化不敏感,在1ms的積分步長(zhǎng)下即可得到精確解,而鋼軌和橋梁的振動(dòng)加速度指標(biāo)對(duì)時(shí)間積分步長(zhǎng)的變化敏感,時(shí)間積分步長(zhǎng)需要小于0.4ms。
[Abstract]:Based on the wheel-rail Hertz contact model, the system dynamic equations of train-track-bridge vertical coupling system and coupling time-varying method are established respectively. According to the theory of maximum frequency and spectral radius of the system, the requirements of the two dynamic equations for the time integral step size and the difference in the calculation convergence are analyzed. Taking the 5-span simply supported beam bridge passed by 8 high-speed trains as an example, the calculation accuracy of the dynamic equations of the two systems is compared, and the influence of different time integral steps of the coupled time-varying system dynamic equations on the calculation accuracy of different dynamic response indexes is analyzed. The results show that the dynamic equation of the separated iterative method is controlled by the iterative stability and the calculation accuracy in the integral step, and the time integral step size must be less than 0.2 Ms. However, the dynamic equation of the coupled time-varying system allows a large time integral step size, but the calculation accuracy of different dynamic response indexes is different by the time integral step size. Among them, rail displacement, vehicle body vibration acceleration, bridge displacement and wheel-rail vertical force are not sensitive to the change of time integral step size, and the exact solution can be obtained under the integral step size of 1ms. The vibration acceleration index of rail and bridge is sensitive to the change of time integral step size, and the time integral step size needs to be less than 0.4 Ms.
【作者單位】: 中南大學(xué)土木工程學(xué)院;中南大學(xué)高速鐵路建造技術(shù)國(guó)家工程實(shí)驗(yàn)室;西南交通大學(xué)牽引動(dòng)力國(guó)家重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(51378511,51678576) 湖南省高校創(chuàng)新平臺(tái)開(kāi)放基金(13K006) 牽引動(dòng)力國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(TPL1601) 中南大學(xué)中央高;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金資助項(xiàng)目(2016ZZTS421)
【分類(lèi)號(hào)】:U211;U441.7
,
本文編號(hào):2508230
[Abstract]:Based on the wheel-rail Hertz contact model, the system dynamic equations of train-track-bridge vertical coupling system and coupling time-varying method are established respectively. According to the theory of maximum frequency and spectral radius of the system, the requirements of the two dynamic equations for the time integral step size and the difference in the calculation convergence are analyzed. Taking the 5-span simply supported beam bridge passed by 8 high-speed trains as an example, the calculation accuracy of the dynamic equations of the two systems is compared, and the influence of different time integral steps of the coupled time-varying system dynamic equations on the calculation accuracy of different dynamic response indexes is analyzed. The results show that the dynamic equation of the separated iterative method is controlled by the iterative stability and the calculation accuracy in the integral step, and the time integral step size must be less than 0.2 Ms. However, the dynamic equation of the coupled time-varying system allows a large time integral step size, but the calculation accuracy of different dynamic response indexes is different by the time integral step size. Among them, rail displacement, vehicle body vibration acceleration, bridge displacement and wheel-rail vertical force are not sensitive to the change of time integral step size, and the exact solution can be obtained under the integral step size of 1ms. The vibration acceleration index of rail and bridge is sensitive to the change of time integral step size, and the time integral step size needs to be less than 0.4 Ms.
【作者單位】: 中南大學(xué)土木工程學(xué)院;中南大學(xué)高速鐵路建造技術(shù)國(guó)家工程實(shí)驗(yàn)室;西南交通大學(xué)牽引動(dòng)力國(guó)家重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(51378511,51678576) 湖南省高校創(chuàng)新平臺(tái)開(kāi)放基金(13K006) 牽引動(dòng)力國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(TPL1601) 中南大學(xué)中央高;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金資助項(xiàng)目(2016ZZTS421)
【分類(lèi)號(hào)】:U211;U441.7
,
本文編號(hào):2508230
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2508230.html
最近更新
教材專(zhuān)著