天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 交通工程論文 >

復(fù)合拱圈加固圬工拱橋模型試驗(yàn)及工程應(yīng)用研究

發(fā)布時(shí)間:2019-06-24 22:01
【摘要】:圬工拱橋采用復(fù)合拱圈加固后,能夠提高加固結(jié)構(gòu)的整體性、耐久性、強(qiáng)度、剛度和承載力,同時(shí),這種加固方法因其施工方便、造價(jià)低廉等優(yōu)點(diǎn),在我國應(yīng)用前景廣闊。但是,就圬工拱橋加固理論而言,國內(nèi)外就此開展的理論研究很少。因此研究復(fù)合拱圈加固圬工拱橋的加固技術(shù),具有十分重要的理論意義和實(shí)際工程應(yīng)用價(jià)值。 本文以某實(shí)施復(fù)合拱圈技術(shù)加固的圬工拱橋?yàn)楣こ瘫尘,采用理論分析、?shù)值模擬及模型試驗(yàn)相結(jié)合的方法,研究了加固后的拱段。針對(duì)加固拱段的受力特點(diǎn),系統(tǒng)研究了理論分析方法、承載能力、破壞形態(tài)、應(yīng)力-應(yīng)變曲線、復(fù)合拱圈統(tǒng)一偏心受壓本構(gòu)關(guān)系和加固后正截面極限承載力計(jì)算方法。最后,將所研究的主要內(nèi)容應(yīng)用于復(fù)合拱圈加固石拱橋的設(shè)計(jì)示例中,促進(jìn)了研究成果在工程實(shí)踐中的應(yīng)用。主要研究成果如下: 1、設(shè)計(jì)制作了9個(gè)典型的加固柱和2個(gè)未加固的對(duì)比柱,并進(jìn)行階段試驗(yàn)設(shè)計(jì)。制定完整試驗(yàn)計(jì)劃,明確測(cè)試內(nèi)容和試驗(yàn)?zāi)康,確定受壓破壞的靜力試驗(yàn)加載方案。上述工作是加固試驗(yàn)完成的前提條件,直接關(guān)系到整個(gè)試驗(yàn)的成敗,為復(fù)合拱圈加固圬工拱橋提供分析基礎(chǔ)和計(jì)算依據(jù)。 2、在試驗(yàn)室2000kN千斤頂上進(jìn)行了11個(gè)模型的試驗(yàn),加載過程中,觀察各試件的破壞過程,采集了各試件的承載力、荷載-應(yīng)變曲線。對(duì)影響試件極限承載力的各種因素,包括受壓區(qū)高度、原拱圈裂縫高度、加固層寬度和初應(yīng)力一一作了分析。發(fā)現(xiàn)各試件在測(cè)試截面處的荷載-應(yīng)變曲線的整體測(cè)試值與局部測(cè)試值基本接近,驗(yàn)證了試驗(yàn)數(shù)據(jù)的準(zhǔn)確性。通過對(duì)試驗(yàn)數(shù)據(jù)分析,加載初期時(shí)砌體和混凝土復(fù)合拱圈截面應(yīng)變分布情況不滿足平截面假定,隨著荷載的不斷增大,復(fù)合拱圈截面應(yīng)力重分布,砌體和混凝土層協(xié)調(diào)變形、共同受力,加載至0.9Pu時(shí)截面應(yīng)變分布仍近似滿足平截面假定。因此可近似認(rèn)為復(fù)合拱圈截面的變形滿足平截面假定。 3、根據(jù)復(fù)合拱圈滿足平截面假定的條件,基于4種常用的不同混凝土本構(gòu)關(guān)系和1種常用的砌體本構(gòu)關(guān)系,分別推導(dǎo)了4種復(fù)合材料的本構(gòu)關(guān)系。將這4種復(fù)合材料本構(gòu)關(guān)系應(yīng)用于試件的有限元仿真模型中,比較有限元數(shù)值和實(shí)測(cè)數(shù)值,結(jié)果表明,采用混凝土Rüsch二次拋物線加水平直線模式推導(dǎo)出的復(fù)合材料本構(gòu)關(guān)系的極限承載力有限元數(shù)值接近實(shí)測(cè)數(shù)值。以該復(fù)合材料本構(gòu)關(guān)系模型為研究對(duì)象,分析應(yīng)力-應(yīng)變?cè)茍D:發(fā)現(xiàn)理論破壞過程與實(shí)際破壞過程相近;對(duì)比理論荷載-應(yīng)變數(shù)值和曲線與實(shí)際荷載-應(yīng)變數(shù)值和曲線的,可以看出,砌體和混凝土偏壓構(gòu)件的荷載-應(yīng)變曲線理論值和實(shí)際值能較好地吻合。說明混凝土采用Rüsch二次拋物線加水平直線模式推導(dǎo)出的復(fù)合材料本構(gòu)關(guān)系還是比較符合實(shí)際情況的。從而,為復(fù)合拱圈加固圬工拱橋數(shù)值分析提供了準(zhǔn)確的簡(jiǎn)化方法。 4、考慮加固前原拱圈的初應(yīng)力,砌體、混凝土和鋼筋的本構(gòu)關(guān)系,針對(duì)加固前圬工主拱圈是否出現(xiàn)橫向裂縫,以混凝土肋式截面加固圬工拱橋?yàn)槔,推?dǎo)了復(fù)合拱圈加固圬工拱橋的正截面極限承載力計(jì)算公式。采用適于工程師使用的mapple軟件,可以快速計(jì)算所求截面極限承載力。算例表明,公式計(jì)算值與試驗(yàn)實(shí)測(cè)值相比,誤差在9%以內(nèi),為該推導(dǎo)公式在工程實(shí)際應(yīng)用中提供可靠的理論支撐,說明本文所推導(dǎo)的公式還是比較符合工程實(shí)際應(yīng)用。因?yàn)橥茖?dǎo)的公式對(duì)于大、小偏心受壓構(gòu)件均適合,所以該公式具有較高的適用性。 5、基于平截面假定,復(fù)合材料本構(gòu)關(guān)系和推導(dǎo)的復(fù)合拱圈加固圬工拱橋極限承載力公式,詳細(xì)提出從截面設(shè)計(jì)到截面復(fù)核的加固設(shè)計(jì)流程。通過一個(gè)較為全面的復(fù)合拱圈加固圬工拱橋的設(shè)計(jì)示例,證明了本文推導(dǎo)的復(fù)合材料本構(gòu)關(guān)系和極限承載力計(jì)算公式可以安全可靠的應(yīng)用于復(fù)合拱圈加固圬工拱橋的正截面極限承載力計(jì)算中,把理論分析和工程實(shí)踐完整的結(jié)合起來,促進(jìn)了研究成果更好的推廣應(yīng)用于工程實(shí)踐。 綜上所述,,文中具有的創(chuàng)新點(diǎn)為: 1、基于試驗(yàn)數(shù)據(jù)分析,驗(yàn)證了加固截面加載至破壞的平截面假定。加載初期由于砌體和混凝土的變形不同步,所以截面應(yīng)變分布情況并不滿足平截面假定。隨著加載的不斷增大,組合截面應(yīng)力重分布,砌體和混凝土層協(xié)調(diào)變形、共同受力,加載至0.9Pu時(shí)截面應(yīng)變分布近似滿足平截面假定,因此可近似認(rèn)為復(fù)合截面的變形滿足平截面假定。 2、根據(jù)復(fù)合拱圈滿足平截面的假定條件,基于4種常用的不同混凝土本構(gòu)關(guān)系和1種常用的砌體本構(gòu)關(guān)系,分別推導(dǎo)了4種復(fù)合材料的本構(gòu)關(guān)系。將這4種復(fù)合材料本構(gòu)關(guān)系應(yīng)用于試件的有限元仿真模型中,通過有限元數(shù)值與相應(yīng)的模型試驗(yàn)實(shí)測(cè)數(shù)值的對(duì)比,分析得出混凝土采用Rüsch二次拋物線加水平直線模式的復(fù)合材料本構(gòu)關(guān)系計(jì)算的承載力與實(shí)際試驗(yàn)值接近。將該復(fù)合材料的本構(gòu)關(guān)系應(yīng)用于工程實(shí)例的有限元分析中,在精簡(jiǎn)有限元模型和簡(jiǎn)化計(jì)算工作量同時(shí),仍能準(zhǔn)確地計(jì)算極限承載力。 3、基于加固結(jié)構(gòu)初應(yīng)力和加固材料非線性,針對(duì)加固前圬工主拱圈是否出現(xiàn)橫向裂縫,推導(dǎo)出的正截面極限承載力公式,并用試驗(yàn)進(jìn)行驗(yàn)證。結(jié)果表明,公式計(jì)算值與試驗(yàn)實(shí)測(cè)值誤差在9%以內(nèi),可以準(zhǔn)確快速計(jì)算各截面極限承載力。再將該極限承載力公式應(yīng)用于工程實(shí)例中,公式計(jì)算值與有限元計(jì)算值相近,說明推導(dǎo)公式能安全可靠應(yīng)用于工程實(shí)踐中。
[Abstract]:After the arch bridge is reinforced by the composite arch ring, the integrity, the durability, the strength, the rigidity and the bearing capacity of the reinforcing structure can be improved, and at the same time, the reinforcing method has the advantages of convenient construction, low manufacturing cost and the like, and has wide application prospect in China. However, in the case of the reinforcement theory of the arch bridge, there is little research on the theoretical research carried out at home and abroad. Therefore, it is of great theoretical significance and practical engineering application value to study the reinforcement technology of composite arch ring for strengthening the arch bridge. In this paper, by means of the combination of the theoretical analysis, the numerical simulation and the model test, the reinforced arch bridge arch bridge is used as the engineering background, and the arch-reinforced arch bridge is studied. In this paper, the theoretical analysis method, the bearing capacity, the damage form, the stress-strain curve, the unified eccentric compression constitutive relation of the composite arch ring and the calculation formula of the ultimate bearing capacity of the positive section after the reinforcement are studied for the stress characteristics of the reinforced arch section. Finally, the main content of the research is applied to the design example of the composite arch-ring reinforced stone arch bridge, and the research results are promoted in the engineering practice. The main research results are as follows: Next:1,9 typical reinforcement columns and 2 unreinforced contrasting columns were designed and staged Inspection and design. Establish complete test plan, specify test content and test objective, and determine static test of pressure failure. The above-mentioned work is a prerequisite for the completion of the reinforcement test, which is directly related to the success or failure of the whole test, and provides an analysis foundation and a meter for the composite arch ring to reinforce the arch bridge Based on.2, the test and loading of 11 models on the 2000kN jack in the laboratory are carried out, and the damage process of each test piece is observed, and the bearing capacity and the load of each test piece are collected. -strain curve. Various factors that affect the ultimate bearing capacity of the test piece, including the height of the compression area, the height of the original arch ring, the width of the reinforcement layer and the initial stress. An analysis was made. The overall test value of the load-strain curve at the test section of each test piece was found to be close to the local test value and the number of tests was verified According to the test data analysis, the stress redistribution of the composite arch ring and the coordination and deformation of the masonry and the concrete layer are not satisfied by the analysis of the test data and the distribution of the section strain of the composite arch ring of the masonry and the concrete at the beginning of the loading. And the strain distribution of the cross-section is still nearly satisfied when the load is loaded to 0.9 Pu. The assumption of the flat section is that the deformation of the section of the composite arch ring can be considered to be satisfied. 3. According to the condition that the composite arch ring meets the assumption of the flat section, four kinds of composite concrete constitutive relation and one kind of common masonry constitutive relation are derived based on four commonly used constitutive relations of different concrete and one commonly used masonry constitutive relation. The constitutive relation of the material is applied to the finite element simulation model of the test piece, and the finite element value and the actual measurement are compared. The numerical results show that the finite element number of the ultimate bearing capacity of the composite material constitutive relation is derived by the secondary parabolic and horizontal linear mode of the concrete R-sch. The value is close to the measured value. The constitutive relation model of the composite material is the study object, and the stress-strain cloud picture is analyzed. The theoretical damage process is found to be similar to the actual failure process, and the theoretical load-strain value and the curve and the actual load-strain value and the curve are compared. As can be seen from the line, the theoretical and practical values of the load-strain curves of the masonry and concrete-biased components The results show that the constitutive relation of the composite material derived from the R-Ssch-quadratic parabola and the horizontal straight-line mode is a good agreement. According to the actual situation, the numerical analysis of the arch bridge reinforced by the composite arch ring is provided. 4. Considering the constitutive relation of the initial stress, the masonry, the concrete and the steel bar of the original arch ring before the reinforcement, whether the transverse crack is present in the main arch ring of the front arch ring before the reinforcement, and the concrete ribbed section In this paper, the positive cross section of the arch bridge reinforced by the composite arch ring is derived for example. Calculation formula for ultimate bearing capacity. The ultimate bearing capacity of the section is obtained. The example shows that the error is within 9% of the calculated value of the formula, which provides a reliable theoretical support in the practical application of the engineering, and the formula or the ratio derived in this paper is explained. The proposed formula is suitable for large and small eccentric compression members, so the utility model The formula has high applicability.5. Based on the assumption of the flat section, the constitutive relation of the composite material and the formula of the ultimate bearing capacity of the composite arch ring reinforced by the composite arch ring, the design of the section from the section is proposed in detail. In this paper, the design example of a comprehensive composite arch ring for strengthening the arch bridge is proved, and the constitutive relation and ultimate bearing capacity of the composite arch bridge are proved to be safe and reliable. In the calculation of the ultimate bearing capacity of the positive section, the combination of the theory analysis and the engineering practice is integrated, and the research results are promoted. Good application in engineering practice. As stated above, the point of innovation in this paper is:1. Based on the data analysis of the test, it is verified The reinforced section is loaded into the flattened section of the failure. The section of the section is not synchronized due to the deformation of the masonry and the concrete at the beginning of the load, so the section The distribution of the strain is not satisfied with the assumption of the flat section. With the increasing loading, the stress redistribution of the combined section, the coordination and deformation of the masonry and the concrete layer, the joint force and the strain distribution of the section at the time of loading to 0.9Pu meet the assumption of the flat section, so it can be considered as an approximation. For the deformation of the composite section, the assumption of the flat section is satisfied.2. According to the assumption that the composite arch ring meets the flat section, the constitutive relation of four common types of concrete and the constitutive relation of one kind of common masonry are based on four kinds of common different concrete constitutive relation. In this paper, the constitutive relation of four composite materials is derived respectively. The constitutive relation of the four composites is applied to the finite element simulation model of the test piece, and the constitutive relation of the four composites is obtained by the finite element method. Based on the comparison between the numerical value and the corresponding model test, the composite material of the R-sch secondary parabola and the horizontal linear mode is obtained. The bearing capacity of the structural relationship is close to the actual test value. The constitutive relation of the composite material is applied to the finite element analysis of the engineering case, and the finite element model and the simplified calculation are simplified. At the same time, the ultimate bearing capacity can be calculated accurately.3. Based on the initial stress of the reinforcement structure and the non-linearity of the reinforcement material, the transverse crack appears in the main arch ring of the pre-reinforcement for reinforcement, and the result is derived. The formula of the ultimate bearing capacity of the positive section is calculated and verified with the test. The result shows that the error of the formula calculation value and the test measured value is 9%. the ultimate bearing capacity of each section can be accurately and quickly calculated, and the ultimate bearing capacity formula is applied to the engineering example, and the formula calculation value is similar to that of the finite element calculation value,
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:U448.22

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 曾曉明,楊偉軍,施楚賢;砌體受壓本構(gòu)關(guān)系模型的研究[J];四川建筑科學(xué)研究;2001年03期

2 龐國棟;周建廷;李躍軍;;復(fù)合主拱圈加固石拱橋的承載力計(jì)算模式研究[J];重慶交通學(xué)院學(xué)報(bào);2006年S1期

3 譚勇;周建庭;沈小俊;郝垎;譚隆友;周勇;;常用拱式橋梁加固技術(shù)及適用特點(diǎn)分析[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期

4 黃海東;向中富;劉劍鋒;林曉鋒;;基于組合截面內(nèi)力分配的拱橋加固內(nèi)力計(jì)算方法[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年02期

5 周建庭;黎小剛;屈建強(qiáng);韓雪;徐正強(qiáng);;復(fù)合主拱圈加固石拱橋力學(xué)性態(tài)分析[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年06期

6 周磊;周建庭;黃燦;張力文;孫伊圣;;復(fù)合主拱圈加固石拱橋關(guān)鍵技術(shù)研究[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期

7 黃燦;劉思孟;周建庭;周磊;吳恒;;基于組合截面分析的拱橋加固效果評(píng)價(jià)[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期

8 彭益清;錨噴鋼筋混凝土在拱橋加固中的應(yīng)用[J];湖南交通科技;2003年01期

9 鄧連升;張朝明;李躍軍;;鋼筋混凝土套箍封閉主拱圈加固石拱橋技術(shù)的研究[J];湖南交通科技;2010年01期

10 楊波;;既有拱橋增大截面法加固改造技術(shù)研究[J];湖南交通科技;2010年02期

相關(guān)博士學(xué)位論文 前2條

1 廖碧海;拱橋評(píng)估與加固的理論和實(shí)踐研究[D];華中科技大學(xué);2009年

2 崔海琴;碳纖維約束空心薄壁墩抗震性能試驗(yàn)研究[D];長(zhǎng)安大學(xué);2010年



本文編號(hào):2505397

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2505397.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0d12f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com