曲線箱梁橋整體穩(wěn)定性設(shè)計(jì)研究
[Abstract]:Because the curved girder bridge can adapt to the terrain environment very well, realize the intercommunication and mutual access of the various directions traffic, at the same time the lines are smooth, bright and quick, have the rhythm sense, so it has been widely used in the city three-dimensional traffic and the high-grade highway. And the main box girder bridge. Because the stress and deformation characteristics of curved girder bridge are quite different from that of straight beam bridge, but in the design and construction of the curved girder bridge, there are some diseases in the design and construction, which can be summed up as follows: the plane displacement of the whole beam body; The overturning and overturning of the outside of the beam and the collapse of the upper beam caused by the instability of the lower pier have caused adverse effects and economic losses to the society. These phenomena all belong to the whole stability problem of curved girder bridge, so how to improve the overall stability of curved girder bridge and avoid the inherent shortage of bridge structure stability is very important in the design. In this paper, the stability geometric design, anti-overturning design and support system design of curved girder bridge are discussed. Especially, the design of supporting system is discussed, and the numerical modeling analysis is carried out by using MIDAS software. There are three chapters in this paper, namely, the fourth, fifth and sixth chapters, from three aspects: plane constrained support, torsional support and consolidation design of pier beam. The radial displacement of curved girder bridge is partly caused by the pure plane force (integral temperature, concrete shrinkage, centrifugal force, braking force) and partly by the radial displacement caused by the torsional deformation of the beam body. The larger the transverse restraint stiffness of the beam is, the smaller the radial displacement of the beam is under the plane force, but at the same time, the larger the radial support reaction force of the restrained support is, so the design should be considered comprehensively according to the concrete situation. Generally speaking, the transverse stiffness of pier beam consolidation is greater than that of fixed support. The tangential displacement constraint of curved girder bridge should not be too strong, otherwise the beam body will produce plane reverse arch and increase radial displacement under the action of integral temperature and concrete shrinkage. Setting the position of torsional bearing will produce great internal force of torque, thus adjust the distribution of torque of beam body, and the effect of adjusting torque of pier beam consolidation is more obvious than that of anti-torsion double support. The torque distribution can be adjusted by preset pivot eccentricity for the single column pier, and the additional reverse torque is linearly related to the eccentricity value. In the middle and side pier, the degree of torque adjustment will be strengthened if the eccentric is carried out at the same time. Basically is only the eccentric middle pier when adjusts the torque value 2 times. When the curvature is large, the eccentricity of the preset bearing can not completely eliminate the tension state of the inner bearing, and the distance between the torsion bearing should be adjusted to avoid the void. The torque distribution of the beam can be adjusted by means of the consolidation of piers and beams, and the pedestal detachment can be avoided. However, the consolidation of pier and beam makes the curved beam bridge form a small rigid frame structure system. With the decrease of pier height and the increase of linear stiffness, the load effect on the pier top is also increasing except for the braking force and centrifugal force, especially the My value of the longitudinal bridge bending moment at the top of the pier is greatly affected, but the influence of the axial force N is negligible. When the pier height is constant, with the increase of the number of consolidation piers, the axial force at the top of the pier and the bending moment of the transverse bridge do not change much, but the bending moment of the longitudinal bridge increases more. The My value generated by other loads increases with the increase of the number of consolidation loads except for the braking force. Therefore, in the design of pier and beam consolidation, comprehensive consideration should be given to the stress of the upper and lower parts of the curved bridge, weighing the advantages and disadvantages. When the height of the pier is less than 5-10m and the linear stiffness is larger, the less the piers should be consolidated, and the more symmetrical consolidation of the long side piers is avoided at the same time.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U442.5;U448.213
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧學(xué)軍,于詠,黃曉惠;后鹽立交橋曲線梁設(shè)計(jì)簡介[J];遼寧交通科技;2004年12期
2 杜嘉斌,羅旗幟,張學(xué)文;計(jì)算連續(xù)曲線梁橋的有限段法[J];佛山科學(xué)技術(shù)學(xué)院學(xué)報(bào)(自然科學(xué)版);2004年04期
3 田秀蘭,陳伏立;曲線梁橋設(shè)計(jì)理論述評[J];福建建筑;2005年Z1期
4 姜海麗;蘇輝;趙偉;;曲線梁橋的設(shè)計(jì)[J];黑龍江水利科技;2006年03期
5 柳愛群;楊中;楊華勛;;公路曲線梁橋設(shè)計(jì)與施工若干問題研究[J];廣東建材;2007年10期
6 孔德偉;;曲線梁橋的受力施工特點(diǎn)及設(shè)計(jì)方法[J];黑龍江交通科技;2008年12期
7 王文學(xué);康凱樂;張俊勇;張華兵;張海龍;;曲線梁橋荷載橫向分配的程序設(shè)計(jì)與計(jì)算[J];華東公路;2008年03期
8 韓超;孔德偉;;曲線梁橋的受力施工特點(diǎn)及設(shè)計(jì)方法[J];黑龍江交通科技;2009年04期
9 尹萍;;淺談曲線梁橋設(shè)計(jì)中應(yīng)注意的幾個(gè)問題[J];科技信息;2010年12期
10 李澤洲;;曲線梁橋關(guān)鍵設(shè)計(jì)淺談[J];工程建設(shè)與設(shè)計(jì);2010年09期
相關(guān)會(huì)議論文 前10條
1 黃正榮;張辛;;小議曲線梁橋設(shè)計(jì)與計(jì)算[A];全國城市公路學(xué)會(huì)第十八屆學(xué)術(shù)年會(huì)論文集[C];2009年
2 潘曉民;;預(yù)應(yīng)力曲線梁橋維修設(shè)計(jì)與施工[A];中國交通土建工程學(xué)術(shù)論文集(2006)[C];2006年
3 柳愛群;楊中;尹益輝;;引起混凝土曲線梁橋側(cè)向位移的原因分析[A];第17屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅱ冊)[C];2008年
4 單德山;李喬;;鐵路曲線梁橋地震響應(yīng)分析[A];第十六屆全國橋梁學(xué)術(shù)會(huì)議論文集(下冊)[C];2004年
5 焦馳宇;劉陸宇;龍佩恒;;城市曲線梁橋爬移現(xiàn)象及解決措施研究[A];第23屆全國結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅰ冊)[C];2014年
6 孫廣華;丁大鈞;;計(jì)算曲線梁橋預(yù)應(yīng)力鋼筋重心線的新方法[A];中國土木工程學(xué)會(huì)市政工程學(xué)會(huì)第三次全國城市橋梁學(xué)術(shù)會(huì)議論文集[C];1991年
7 孫穎;卓衛(wèi)東;房貞政;;公路曲線梁橋抗震研究文獻(xiàn)綜述[A];防振減災(zāi)工程理論與實(shí)踐新進(jìn)展(紀(jì)念汶川地震一周年)——第四屆全國防震減災(zāi)工程學(xué)術(shù)研討會(huì)會(huì)議論文集[C];2009年
8 鐘建;李照明;;預(yù)應(yīng)力曲線梁橋在設(shè)計(jì)中應(yīng)注意的幾個(gè)問題[A];中國土木工程學(xué)會(huì)市政工程分會(huì)2000年學(xué)術(shù)年會(huì)論文集[C];2000年
9 周若來;陳衛(wèi)東;;曲線梁橋常見病害與設(shè)計(jì)要點(diǎn)[A];湖北省公路學(xué)會(huì)成立三十周年暨二○○八年學(xué)術(shù)年會(huì)論文集[C];2008年
10 陳朝慰;彭大文;;剛構(gòu)-連續(xù)組合曲線梁橋的地震響應(yīng)研究[A];中國公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程學(xué)會(huì)2002年全國橋梁學(xué)術(shù)會(huì)議論文集[C];2002年
相關(guān)重要報(bào)紙文章 前1條
1 上蔡縣公路管理局 關(guān)凱華;淺談公路曲線梁橋的設(shè)計(jì)和應(yīng)注意的問題[N];駐馬店日報(bào);2014年
相關(guān)博士學(xué)位論文 前5條
1 邱波;曲線梁橋的非線性計(jì)算理論研究及其應(yīng)用[D];湖南大學(xué);2003年
2 黃新藝;混凝土連續(xù)曲線梁橋在車輛荷載作用下的動(dòng)力響應(yīng)研究[D];哈爾濱工業(yè)大學(xué);2008年
3 孫建鵬;曲線箱梁橋狀態(tài)傳遞理論研究[D];西安建筑科技大學(xué);2010年
4 吳桐;鉸接構(gòu)造框架式曲線梁橋三維地震反應(yīng)的研究[D];東北林業(yè)大學(xué);2014年
5 王麗;大跨度立交橋抗震設(shè)計(jì)理論與方法[D];北京工業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 劉云飛;曲線梁橋的設(shè)計(jì)理論與工程應(yīng)用[D];天津大學(xué);2004年
2 楊忠平;曲線梁橋若干問題的研究[D];華中科技大學(xué);2005年
3 張平;曲線梁橋常見病害分析與設(shè)計(jì)優(yōu)化[D];長安大學(xué);2013年
4 白偉;曲線梁橋在地震作用下的碰撞反應(yīng)分析[D];長安大學(xué);2015年
5 王聰;曲線梁橋的地震反應(yīng)分析與減隔震研究[D];長安大學(xué);2015年
6 林麗娟;曲線梁橋的橫向“爬移”分析[D];鄭州大學(xué);2015年
7 王錦程;獨(dú)柱式曲線梁橋的穩(wěn)定性分析[D];河北工業(yè)大學(xué);2015年
8 楊莉;曲線箱梁橋整體穩(wěn)定性設(shè)計(jì)研究[D];重慶交通大學(xué);2014年
9 胡明剛;曲線梁橋的動(dòng)力分析及抗震性能研究[D];西南交通大學(xué);2010年
10 秦亮;曲線梁橋縱向彎曲應(yīng)力的研究[D];重慶交通大學(xué);2010年
,本文編號(hào):2414570
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2414570.html