鋼橋面環(huán)氧瀝青鋪裝粘結(jié)層性能與結(jié)構(gòu)力學(xué)分析
[Abstract]:With the sustained and rapid development of economy, long-span highway steel bridges are more and more widely used in the field of transportation in China. Steel deck pavement plays an important role in ensuring good driving environment. At present, steel deck pavement is one of the key and difficult points in the research of long span highway steel bridge. The orthotropic steel deck has the advantages of high strength, fatigue resistance and high temperature resistance due to its structural characteristics and complex deformation, so it is difficult for asphalt concrete pavement to meet the requirements of pavement performance. It has been gradually applied to steel bridge deck pavement in China, and some of the epoxy asphalt concrete pavement still have problems such as cracking, delamination, bulging and so on. The bond layer of steel bridge deck pavement is the key link of pavement structure system, but there is no clear and unified testing and evaluation method of epoxy asphalt pavement bond layer at present, and the microstructure of bond interface of epoxy asphalt pavement is also lack of in-depth study. A lot of research work has been done on the analysis of steel bridge deck epoxy asphalt pavement structure, but there is still no research on the element size, load loading mode and the influence of transverse slope in finite element method. In this paper, the following research work is carried out on mechanical calculation and bonding layer of pavement structure. (1) orthogonal experimental design for mechanical properties of epoxy resin adhesive layer is carried out. The sensitivity of bond properties to three factors (bond thickness, loading rate, temperature) was evaluated by tensile shear and drawing tests. The relationship between bond shear and drawing strength was established by correlation analysis. To evaluate the influencing factors of bond layer performance test. (2) to determine the influence of gradation on bond ability between coarse and fine grade paving layer and steel plate, and to quantify the contact state between different grade and steel plate by digital image processing. The relationship between the ratio of coarse aggregate near the interface and the bond strength of interface is established. Through microscopic image observation, the microcosmic distribution of epoxy resin in interface contact area and mixture is compared and analyzed. (3) the finite element numerical model is established in combination with Humen Bridge pavement project, and the effect of mesh size on the calculation results is compared. The reasonable mesh size of the model element is determined, and the modulus of the pavement layer, the overload rate and the loading mode of the single and double wheels are calculated and analyzed at the same time. The influence of pavement cracking on the mechanical response of pavement is analyzed. (4) the influence of lateral slope on the mechanical response difference of wheel track on both sides of pavement is calculated and analyzed in the numerical model, based on the phenomenon of disease difference of wheel track on both sides of pavement of Humen Bridge. The influence of transverse slope on the mechanical response of steel deck pavement is analyzed. The mechanical properties of the bond layer are most sensitive to the temperature factor in the test and evaluation of the bond layer. The shear and tensile strength of the bond layer show a quadratic curve relationship. In the contact state between coarse and fine grade pavement and steel plate, more coarse aggregates are directly in contact with steel plate in coarse gradation. The experimental results show that the bond strength of coarse gradation interface is lower than that of fine grade. The stress on the pavement of Humen Bridge under different parameters is calculated by finite element numerical simulation. The results show that the transverse slope of Humen Bridge has a significant effect on the mechanical response of the pavement.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:U443.33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉淑娟;;瀝青混凝土橋面鋪裝粘結(jié)層受力分析及施工控制要點(diǎn)[J];黑龍江交通科技;2012年10期
2 ;復(fù)合管和芯軸由于高濕度造成的粘結(jié)層剝離[J];包裝與食品機(jī)械;1988年02期
3 ;纖維管和芯軸由于水浸入造成的粘結(jié)層剝離[J];包裝與食品機(jī)械;1988年02期
4 Sofia Teixeira de Freitas;Henk Kolstein;Frans Bijlaard;;正交異性鋼橋面板改造的組合粘結(jié)系統(tǒng)[J];鋼結(jié)構(gòu);2010年03期
5 顧興宇;王文達(dá);;水泥混凝土橋面粘結(jié)層抗剪性能要求及簡(jiǎn)化計(jì)算[J];交通運(yùn)輸工程學(xué)報(bào);2010年02期
6 徐偉,李智,張肖寧;混凝土橋面鋪裝粘結(jié)層體系力學(xué)性能試驗(yàn)研究[J];哈爾濱建筑大學(xué)學(xué)報(bào);2002年04期
7 李宏志;;橋面防水粘結(jié)層性能試驗(yàn)分析[J];長(zhǎng)沙交通學(xué)院學(xué)報(bào);2007年01期
8 劉發(fā);江臣;;新型橋面防水粘結(jié)層界面強(qiáng)度評(píng)價(jià)方法研究[J];現(xiàn)代交通技術(shù);2013年01期
9 潘貴;劉細(xì)軍;;瀝青路面粘結(jié)層抗剪試驗(yàn)研究[J];山西建筑;2008年33期
10 華夏;李大鵬;;超薄罩面粘結(jié)層材料試驗(yàn)研究[J];交通標(biāo)準(zhǔn)化;2011年08期
相關(guān)會(huì)議論文 前2條
1 懷麗;劉洋;;環(huán)氧瀝青粘結(jié)層灑布施工控制[A];公路交通與建設(shè)論壇(2009)[C];2010年
2 王珍萬(wàn);;環(huán)氧瀝青鋪裝防腐與粘結(jié)層施工質(zhì)量控制探析[A];公路交通與建設(shè)論壇(2011)[C];2003年
相關(guān)重要報(bào)紙文章 前1條
1 心雨;阻透材料新突破[N];中國(guó)包裝報(bào);2003年
相關(guān)博士學(xué)位論文 前1條
1 曾蔚;同步碎石橋面鋪裝粘結(jié)層層間應(yīng)力分析與應(yīng)用研究[D];長(zhǎng)安大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 邱琳;熱障涂層粘結(jié)層成分優(yōu)化設(shè)計(jì)研究[D];上海交通大學(xué);2014年
2 李水金;鋼橋面環(huán)氧瀝青鋪裝粘結(jié)層性能與結(jié)構(gòu)力學(xué)分析[D];華南理工大學(xué);2016年
3 張東魯;橋面防水粘結(jié)層材料性能評(píng)價(jià)與應(yīng)用研究[D];華南理工大學(xué);2016年
4 柏園;橋面鋪裝粘結(jié)層的研究[D];長(zhǎng)安大學(xué);2005年
5 周源;瀝青混凝土橋面鋪裝粘結(jié)層界面結(jié)構(gòu)和性能研究[D];華南理工大學(xué);2013年
6 吳遠(yuǎn)啟;粘結(jié)層成分與熱障涂層界面電子結(jié)構(gòu)的關(guān)系[D];北京化工大學(xué);2004年
7 劉越;強(qiáng)流脈沖電子束輻照NiCrAlY粘結(jié)層表面改性[D];大連理工大學(xué);2012年
8 蘇俊杰;基于有限元法的外貼FRP加固結(jié)構(gòu)分析研究[D];浙江大學(xué);2014年
9 王浩;全鋼型板式防屈曲支撐無(wú)粘結(jié)層的有限元分析與支撐設(shè)計(jì)方法研究[D];廣州大學(xué);2013年
10 李航;普通機(jī)燒礦消除爐缸粘結(jié)模擬實(shí)驗(yàn)研究[D];昆明理工大學(xué);2010年
,本文編號(hào):2398610
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2398610.html