公交到站時間預(yù)測及換乘機制的研究
[Abstract]:With the vigorous development of intelligent cities, people pay more and more attention to intelligent transportation, and bus arrival time prediction has become a hot topic in recent years. The real-time and accurate prediction of bus arrival time can not only help travelers choose a better route, but also provide scientific management and reasonable scheduling basis for traffic departments. In this paper, the problem of bus arrival time prediction and transit transfer is studied, and a dynamic prediction model of bus arrival time and a bus transfer model based on bus arrival time prediction are proposed. The specific research contents include the following three aspects: firstly, the static and dynamic factors affecting bus arrival time are explored, and a dynamic prediction model of bus arrival time based on various static and dynamic factors is established. The experimental results show that the dynamic prediction model can effectively improve the prediction accuracy compared with the benchmark model. Secondly, in order to improve the efficiency and accuracy of the dynamic prediction model, an adaptive prediction model based on volatility is proposed in this paper. The statistics of historical data volatility in this model mainly include the following three aspects: 1) the arrival time volatility of different dates and different time periods; 2) fluctuation of arrival time of different sections on different dates, 3) fluctuation of arrival time of different sections in different time periods. Based on the similarity of arrival time fluctuation of adjacent sections, the model divides the predicted routes into different combinations of sections for segmental prediction. The experimental results show that the adaptive model can reduce the computation time and improve the prediction accuracy. Finally, aiming at the problem of low real-time and reliability of the existing bus transfer model, this paper proposes a bus transfer model based on bus arrival time prediction. The model takes more account of the influence of time period on the transfer time and transfer mode. Thus, the real-time and reliability of the transfer model are enhanced.
【學(xué)位授予單位】:蘇州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U495;U491.17
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王杰臣,毛海城,楊得志;圖的節(jié)點-弧段聯(lián)合結(jié)構(gòu)表示法及其在GIS最優(yōu)路徑選取中的應(yīng)用[J];測繪學(xué)報;2000年01期
2 董敬欣,吳建平 ,郭繼孚;基于GPS/GIS數(shù)據(jù)的路網(wǎng)層次劃分研究——北京的實踐[J];城市規(guī)劃;2005年10期
3 陳簫楓,蔡秀云,唐德強;最短路徑算法分析及其在公交查詢的應(yīng)用[J];工程圖學(xué)學(xué)報;2001年03期
4 蘇愛華,施法中;公交網(wǎng)絡(luò)換乘問題的一種實現(xiàn)[J];工程圖學(xué)學(xué)報;2005年04期
5 溫惠英;徐建閩;傅惠;;基于灰色關(guān)聯(lián)分析的路段行程時間卡爾曼濾波預(yù)測算法[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2006年09期
6 常磊;劉仁義;張豐;尹天鶴;;考慮多方式換乘的公交網(wǎng)絡(luò)最優(yōu)路徑算法[J];浙江大學(xué)學(xué)報(理學(xué)版);2011年06期
7 劉智琦;李春貴;;公交換乘算法的仿真研究[J];計算機仿真;2011年09期
8 周雪梅;彭昌溆;宋興昊;楊曉光;;基于前車數(shù)據(jù)的動態(tài)公交車輛到站時間預(yù)測模型研究[J];交通與運輸(學(xué)術(shù)版);2011年02期
9 薛雪;孫偉;梁睿;;露天煤礦卡車路段行程時間的實時動態(tài)預(yù)測新方法[J];煤炭學(xué)報;2012年08期
10 李筱菁,孟慶春,魏振鋼,魏天濱,王旭柱,郭忠文,丁鵬;GPS技術(shù)在城市交通狀況實時檢測技術(shù)中的應(yīng)用[J];青島海洋大學(xué)學(xué)報(自然科學(xué)版);2002年03期
本文編號:2331176
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2331176.html