河北省道路交通事故灰色預測模型的構建與應用
發(fā)布時間:2018-11-08 12:56
【摘要】:道路交通事故預測與預防是減少交通事故,提高道理交通安全水平的主要手段之一,逐漸發(fā)展成為道路交通安全研究的熱點問題。道路交通系統(tǒng)是一個動態(tài)的不確定的系統(tǒng),交通事故的發(fā)生具有隨機性。針對道路交通系統(tǒng)“部分信息已知,部分信息未知”的特性,采用灰色系統(tǒng)理論,著重研究“小樣本、貧信息”的不確定問題及“外延明確、內涵不明確”的隨機對象,實現(xiàn)“少數(shù)據(jù)建!。 本文著重研究道路交通事故宏觀影響因素對死亡人數(shù)的影響,利用灰色關聯(lián)分析方法確定主要影響因子,建立預測指標體系。通過構建基于灰色關聯(lián)分析的多因子灰色預測模型MGM(1, N),利用灰色生成算子的作用弱化隨機性,分析道路交通系統(tǒng)內在聯(lián)系,挖掘潛在規(guī)律,經(jīng)過灰色灰色差分方程與灰色微分方程之間的互換實現(xiàn)了利用離散數(shù)據(jù)序列建立連續(xù)動態(tài)的微分方程,,對河北省道路交通事故進行預測。利用河北省2000年至2011年的道路交通事故統(tǒng)計數(shù)據(jù)進行死亡人數(shù)的預測與精度檢驗。實證結果表明,基于灰色關聯(lián)分析的多因子灰色預測模型是可行、有效的。相較于GM(1,1)預測模型,此方法能夠更加合理、科學、準確地預測交通事故的發(fā)展態(tài)勢,可以為交通相關部門提供管理與決策依據(jù)。
[Abstract]:The prediction and prevention of road traffic accidents is one of the main means to reduce traffic accidents and improve the level of traffic safety. It has gradually developed into a hot topic in the research of road traffic safety. Road traffic system is a dynamic and uncertain system, and the occurrence of traffic accidents is random. In view of the characteristic of "part information is known, part information is unknown" of road traffic system, the grey system theory is adopted to study the uncertain problem of "small sample, poor information" and the random object with "explicit extension and unclear connotation". Implement "less data modeling". This paper focuses on the study of the influence of macro factors of road traffic accidents on the number of deaths. The grey correlation analysis method is used to determine the main influencing factors and to establish a prediction index system. By constructing the grey prediction model MGM (1) based on grey relation analysis, N), weakens randomness by using the function of grey generating operator, analyzes the inherent relation of road traffic system, and excavates the latent law. Through the exchange between grey difference equation and grey differential equation, the continuous dynamic differential equation is established by using discrete data sequence, and the road traffic accident in Hebei Province is forecasted. Based on the statistics of road traffic accidents from 2000 to 2011 in Hebei Province, the death toll was predicted and the accuracy was tested. The empirical results show that the multi-factor grey prediction model based on grey correlation analysis is feasible and effective. Compared with the GM (1 / 1) prediction model, this method can predict the development situation of traffic accidents more reasonably, scientifically and accurately, and can provide management and decision-making basis for traffic related departments.
【學位授予單位】:河北科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U491.31
本文編號:2318570
[Abstract]:The prediction and prevention of road traffic accidents is one of the main means to reduce traffic accidents and improve the level of traffic safety. It has gradually developed into a hot topic in the research of road traffic safety. Road traffic system is a dynamic and uncertain system, and the occurrence of traffic accidents is random. In view of the characteristic of "part information is known, part information is unknown" of road traffic system, the grey system theory is adopted to study the uncertain problem of "small sample, poor information" and the random object with "explicit extension and unclear connotation". Implement "less data modeling". This paper focuses on the study of the influence of macro factors of road traffic accidents on the number of deaths. The grey correlation analysis method is used to determine the main influencing factors and to establish a prediction index system. By constructing the grey prediction model MGM (1) based on grey relation analysis, N), weakens randomness by using the function of grey generating operator, analyzes the inherent relation of road traffic system, and excavates the latent law. Through the exchange between grey difference equation and grey differential equation, the continuous dynamic differential equation is established by using discrete data sequence, and the road traffic accident in Hebei Province is forecasted. Based on the statistics of road traffic accidents from 2000 to 2011 in Hebei Province, the death toll was predicted and the accuracy was tested. The empirical results show that the multi-factor grey prediction model based on grey correlation analysis is feasible and effective. Compared with the GM (1 / 1) prediction model, this method can predict the development situation of traffic accidents more reasonably, scientifically and accurately, and can provide management and decision-making basis for traffic related departments.
【學位授予單位】:河北科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U491.31
【參考文獻】
相關期刊論文 前10條
1 張杰;劉小明;賀玉龍;陳永勝;;ARIMA模型在交通事故預測中的應用[J];北京工業(yè)大學學報;2007年12期
2 劉兆惠;王超;許洪國;;道路交通事故灰色預測模型及應用研究[J];長春理工大學學報;2006年04期
3 席建鋒;王曉燕;王雙維;王艷玲;鄧毅萍;;基于粗糙集的道路交通事故成因層次分析方法[J];長春理工大學學報(自然科學版);2009年02期
4 張偉;周秉根;;基于灰色理論的旅游業(yè)與國民經(jīng)濟關聯(lián)性分析[J];國土資源科技管理;2008年02期
5 羅黨,劉思峰,黨耀國;灰色模型GM(1,1)優(yōu)化[J];中國工程科學;2003年08期
6 丁舒平;余同進;;道路交通事故的間接成因分析[J];公路交通科技(應用技術版);2009年03期
7 李相勇,張南,蔣葛夫;道路交通事故灰色馬爾可夫預測模型[J];公路交通科技;2003年04期
8 廖軍洪;張高強;邵春福;;基于GIS的公路交通安全評價技術研究[J];公路交通科技;2011年08期
9 劉少聰;徐鵬;趙啟龍;;基于改進GM(1,1)模型的Vb程序實現(xiàn)及其應用[J];工程地球物理學報;2012年04期
10 劉金;鄧衛(wèi);;基于模糊神經(jīng)網(wǎng)絡的交通事故微觀預測方法研究[J];交通運輸工程與信息學報;2011年04期
本文編號:2318570
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2318570.html
教材專著