天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 交通工程論文 >

城市道路交通擁擠狀態(tài)判別及預(yù)測(cè)研究

發(fā)布時(shí)間:2018-09-08 21:05
【摘要】:城市有限的道路資源難以承載交通量的快速增長,導(dǎo)致交通擁堵問題的出現(xiàn),交通擁堵預(yù)測(cè)是解決交通擁堵問題的重要步驟之一。但由于影響交通系統(tǒng)的因素復(fù)雜繁多,且各種交通參數(shù)具有較強(qiáng)隨機(jī)性和不確定性,使得交通擁堵預(yù)測(cè)研究難以開展,預(yù)測(cè)成功率及可靠性往往不高,針對(duì)這一問題,本文借鑒馬爾可夫理論及灰色預(yù)測(cè)理論,構(gòu)建了適用于交通擁堵預(yù)測(cè)的灰色GM(1,1)-加權(quán)馬爾可夫預(yù)測(cè)模型,并將該模型應(yīng)用于實(shí)例研究中。具體研究過程如下: 首先,在回顧國內(nèi)外研究現(xiàn)狀的基礎(chǔ)上,給出了擁堵的定義、分類、成因和特征。對(duì)經(jīng)典的擁堵識(shí)別算法和常見的速度預(yù)測(cè)模型進(jìn)行了分析; 其次,探討速度預(yù)測(cè)與擁堵識(shí)別的關(guān)系和基于速度的交通擁堵預(yù)測(cè)的原理,并確定相應(yīng)的速度閾值標(biāo)準(zhǔn),基于灰色預(yù)測(cè)理論,結(jié)合馬爾可夫鏈預(yù)測(cè)原理,建立灰色GM(1,1)-馬爾可夫預(yù)測(cè)模型用于交通擁堵預(yù)測(cè),并在此基礎(chǔ)上對(duì)該模型進(jìn)行加權(quán)改進(jìn)以獲得更好的預(yù)測(cè)成功率; 最后,將該模型應(yīng)用于石家莊市主干路——建設(shè)大街的擁堵預(yù)測(cè)實(shí)例研究中,對(duì)該路段未來4天內(nèi)6個(gè)不同時(shí)刻的擁堵狀態(tài)進(jìn)行了預(yù)測(cè)識(shí)別,并與灰色GM(1,1)預(yù)測(cè)模型、灰色GM(1,1)-馬爾可夫預(yù)測(cè)模型的預(yù)測(cè)結(jié)果相比較。結(jié)果表明,該模型的識(shí)別成功率超過66%,優(yōu)于灰色GM(1,1)預(yù)測(cè)模型和灰色GM(1,1)-馬爾可夫預(yù)測(cè)模型,從而表明本文所建立的預(yù)測(cè)模型具有較好的識(shí)別準(zhǔn)確率及可靠性。
[Abstract]:Limited urban road resources are difficult to support the rapid growth of traffic volume, leading to the emergence of traffic congestion problem, traffic congestion prediction is one of the important steps to solve the traffic congestion problem. However, due to the complexity of the factors affecting the traffic system and the strong randomness and uncertainty of various traffic parameters, it is difficult to carry out the research of traffic congestion prediction, and the success rate and reliability of traffic congestion prediction are not always high. Based on Markov theory and grey prediction theory, a grey GM (1) -weighted Markov forecasting model for traffic congestion prediction is constructed in this paper. The model is applied to a case study. The specific research process is as follows: firstly, the definition, classification, causes and characteristics of congestion are given on the basis of reviewing the current research situation at home and abroad. The classical congestion identification algorithms and common speed prediction models are analyzed. Secondly, the relationship between speed prediction and congestion identification and the principle of traffic congestion prediction based on speed are discussed, and the corresponding speed threshold standard is determined. Based on the grey prediction theory and the Markov chain prediction principle, the grey GM (1k-1) -Markov forecasting model is established for traffic congestion prediction, and the weight of the model is improved to obtain a better prediction success rate. Finally, the model is applied to the case study of traffic congestion prediction on the main road of Shijiazhuang City-Construction Street. The congestion state of this section at 6 different times in the next 4 days is forecasted and identified, and it is compared with the grey GM (1Q1) prediction model. The prediction results of grey GM (1 ~ 1)-Markov model are compared. The results show that the success rate of the model is more than 66, which is superior to the grey GM (1t1) prediction model and the grey GM (1K1) -Markov prediction model, which shows that the prediction model established in this paper has good recognition accuracy and reliability.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U491.265

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張毅,羅元;基于人工神經(jīng)網(wǎng)絡(luò)城市交通流量智能預(yù)測(cè)的研究[J];重慶郵電學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年02期

2 朱順應(yīng),王紅,李關(guān)壽;路段上短時(shí)間區(qū)段內(nèi)交通量預(yù)測(cè)ARIMA模型[J];重慶交通學(xué)院學(xué)報(bào);2003年01期

3 趙曉艷;劉天嬌;周波;胡洋;;灰色模型GM(1,1)的平滑改進(jìn)及其應(yīng)用[J];東北電力大學(xué)學(xué)報(bào);2006年04期

4 王煒;公路交通流車速-流量實(shí)用關(guān)系模型[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期

5 任其亮;謝小淞;彭其淵;;城市道路交通量短時(shí)預(yù)測(cè)的GSVMR模型[J];公路交通科技;2008年02期

6 楊兆升,谷遠(yuǎn)利;實(shí)時(shí)動(dòng)態(tài)交通流預(yù)測(cè)模型研究[J];公路交通科技;1998年03期

7 郭義榮;董寶田;吳蕾;;基于速度的交通狀態(tài)識(shí)別及動(dòng)態(tài)評(píng)價(jià)研究[J];公路交通科技;2012年S1期

8 楊兆升;王媛;管青;;基于支持向量機(jī)方法的短時(shí)交通流量預(yù)測(cè)方法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2006年06期

9 劉廷新,李振宇;指數(shù)平滑法在交通參數(shù)短期預(yù)測(cè)中的應(yīng)用[J];山東交通學(xué)院學(xué)報(bào);2002年03期

10 姚亞夫;曹鋒;;基于ARIMA的交通流量短時(shí)預(yù)測(cè)[J];交通科技與經(jīng)濟(jì);2006年03期

相關(guān)博士學(xué)位論文 前1條

1 劉夢(mèng)涵;面向特大城市的分層次交通擁堵評(píng)價(jià)模型及算法[D];北京交通大學(xué);2009年



本文編號(hào):2231694

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2231694.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bbaf1***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com