城市道路交通擁擠狀態(tài)判別及預(yù)測(cè)研究
[Abstract]:Limited urban road resources are difficult to support the rapid growth of traffic volume, leading to the emergence of traffic congestion problem, traffic congestion prediction is one of the important steps to solve the traffic congestion problem. However, due to the complexity of the factors affecting the traffic system and the strong randomness and uncertainty of various traffic parameters, it is difficult to carry out the research of traffic congestion prediction, and the success rate and reliability of traffic congestion prediction are not always high. Based on Markov theory and grey prediction theory, a grey GM (1) -weighted Markov forecasting model for traffic congestion prediction is constructed in this paper. The model is applied to a case study. The specific research process is as follows: firstly, the definition, classification, causes and characteristics of congestion are given on the basis of reviewing the current research situation at home and abroad. The classical congestion identification algorithms and common speed prediction models are analyzed. Secondly, the relationship between speed prediction and congestion identification and the principle of traffic congestion prediction based on speed are discussed, and the corresponding speed threshold standard is determined. Based on the grey prediction theory and the Markov chain prediction principle, the grey GM (1k-1) -Markov forecasting model is established for traffic congestion prediction, and the weight of the model is improved to obtain a better prediction success rate. Finally, the model is applied to the case study of traffic congestion prediction on the main road of Shijiazhuang City-Construction Street. The congestion state of this section at 6 different times in the next 4 days is forecasted and identified, and it is compared with the grey GM (1Q1) prediction model. The prediction results of grey GM (1 ~ 1)-Markov model are compared. The results show that the success rate of the model is more than 66, which is superior to the grey GM (1t1) prediction model and the grey GM (1K1) -Markov prediction model, which shows that the prediction model established in this paper has good recognition accuracy and reliability.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U491.265
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張毅,羅元;基于人工神經(jīng)網(wǎng)絡(luò)城市交通流量智能預(yù)測(cè)的研究[J];重慶郵電學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年02期
2 朱順應(yīng),王紅,李關(guān)壽;路段上短時(shí)間區(qū)段內(nèi)交通量預(yù)測(cè)ARIMA模型[J];重慶交通學(xué)院學(xué)報(bào);2003年01期
3 趙曉艷;劉天嬌;周波;胡洋;;灰色模型GM(1,1)的平滑改進(jìn)及其應(yīng)用[J];東北電力大學(xué)學(xué)報(bào);2006年04期
4 王煒;公路交通流車速-流量實(shí)用關(guān)系模型[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期
5 任其亮;謝小淞;彭其淵;;城市道路交通量短時(shí)預(yù)測(cè)的GSVMR模型[J];公路交通科技;2008年02期
6 楊兆升,谷遠(yuǎn)利;實(shí)時(shí)動(dòng)態(tài)交通流預(yù)測(cè)模型研究[J];公路交通科技;1998年03期
7 郭義榮;董寶田;吳蕾;;基于速度的交通狀態(tài)識(shí)別及動(dòng)態(tài)評(píng)價(jià)研究[J];公路交通科技;2012年S1期
8 楊兆升;王媛;管青;;基于支持向量機(jī)方法的短時(shí)交通流量預(yù)測(cè)方法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2006年06期
9 劉廷新,李振宇;指數(shù)平滑法在交通參數(shù)短期預(yù)測(cè)中的應(yīng)用[J];山東交通學(xué)院學(xué)報(bào);2002年03期
10 姚亞夫;曹鋒;;基于ARIMA的交通流量短時(shí)預(yù)測(cè)[J];交通科技與經(jīng)濟(jì);2006年03期
相關(guān)博士學(xué)位論文 前1條
1 劉夢(mèng)涵;面向特大城市的分層次交通擁堵評(píng)價(jià)模型及算法[D];北京交通大學(xué);2009年
,本文編號(hào):2231694
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2231694.html