基于SVM模式識別方法的橋梁頻域損傷識別
[Abstract]:During the operation of the bridge, the reliability of the structure can not be guaranteed completely due to the unpredictability of the external environment and the operating conditions. The aging of materials, bad natural conditions and serious overload have seriously affected the safety and service life of bridges. After the health monitoring system is installed, the integrity, durability and reliability of the bridge can be evaluated during the normal service life of the bridge. It is convenient to make the best maintenance and maintenance plan and to ensure the safety of the structure. As the core of health monitoring system, bridge damage identification has become a research hotspot in the field of bridge engineering in recent years. In this paper, the basic concepts of bridge health monitoring and damage identification are briefly introduced, and various methods used in bridge damage identification are summarized, and the difficulties in the research of damage identification are simply analyzed. The support vector machine (SVM) method is applied to the damage identification of truss structures. Finally, the SVM method is applied to the damage identification of long-span cable-stayed bridges. The concrete work has the following several aspects: 1. This paper introduces the basic characteristics of structural damage identification in frequency domain, and takes truss structure as an example to select a more reasonable damage index. 2. Taking a long-span cable-stayed bridge as an object of study, a sample set was constructed by numerical simulation and calculation before and after the damage of the cable-stayed bridge. The classification and regression principle of support vector machine are applied to identify the location and degree of damage. The effects of different noise levels on damage identification are compared. 3. Finally, the results of this paper are summarized, and some improvements in damage identification are put forward.
【學位授予單位】:武漢理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U446
【參考文獻】
相關(guān)期刊論文 前10條
1 王文靜,劉志明,繆龍秀;基于實驗模態(tài)的結(jié)構(gòu)應變模態(tài)分析[J];北方交通大學學報;2000年04期
2 陳理淵;黃進;;基于支持向量機的電機轉(zhuǎn)子斷條故障診斷[J];電工技術(shù)學報;2006年08期
3 邱洪興,蔣永生;古塔結(jié)構(gòu)損傷的系統(tǒng)識別Ⅰ:理論[J];東南大學學報(自然科學版);2001年02期
4 宗周紅,WANG T L,HUANG D Z,鄭振飛;橋梁健康監(jiān)測應用與研究現(xiàn)狀(英文)[J];福州大學學報(自然科學版);2002年02期
5 謝峻,韓大建;一種改進的基于頻率測量的結(jié)構(gòu)損傷識別方法[J];工程力學;2004年01期
6 孫宗光,高贊明,倪一清;基于神經(jīng)網(wǎng)絡(luò)的橋梁損傷位置識別[J];工程力學;2004年01期
7 劉龍;孟光;;基于曲率模態(tài)和支持向量機的結(jié)構(gòu)損傷位置兩步識別方法[J];工程力學;2006年S1期
8 林立香,滕海文,霍達,李秀芬;基于曲率模態(tài)比值的城市公路橋梁損傷識別[J];河南科學;2005年06期
9 朱宏平,千力;利用振動模態(tài)測量值和神經(jīng)網(wǎng)絡(luò)方法的結(jié)構(gòu)損傷識別研究[J];計算力學學報;2005年02期
10 李杰,陳雋;未知輸入條件下的結(jié)構(gòu)物理參數(shù)識別研究[J];計算力學學報;1999年01期
本文編號:2181797
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2181797.html