橋梁TMD系統(tǒng)的參數(shù)優(yōu)化與設計
發(fā)布時間:2018-07-10 16:33
本文選題:橋梁 + TMD。 參考:《湖南大學》2014年碩士論文
【摘要】:橋梁結構在人行荷載、車輛荷載、強風以及地震等作用下容易產生振動問題。過大振動會影響通行舒適度,也容易引起構件的疲勞破壞。為了抑制結構振動,國內外學者提出了許多振動控制方法,其中調諧質量阻尼器(Tuned Mass Damper,簡稱TMD)是最常用的橋梁振動控制手段之一。本文針對STMD(Single TunedMass Damper,簡稱STMD)及MTMD(Multiple Tuned Mass Dampers,簡稱MTMD)的參數(shù)優(yōu)化、魯棒性、減振可靠性進行了深入研究,并以我國綿陽市一座城市人行橋為例進行了參數(shù)優(yōu)化設計。論文主要研究內容和取得的成果如下: (1)介紹了橋梁結構的主要振動形式以及振動控制的主要方法,對TMD控制理論的發(fā)展歷史、研究現(xiàn)狀以及工程應用進行了綜述。提出了本文的研究內容。 (2)對考慮被控結構阻尼的STMD進行了參數(shù)優(yōu)化,利用數(shù)值方法得到了STMD的最優(yōu)參數(shù),并對TMD的相對位移進行了研究。結果表明Den Hartog基于耗能平衡的相對位移估算方法僅適用于無阻尼結構在共振區(qū)(0.9/p1.1)時TMD相對位移的估計,而且考慮結構阻尼時Den Hartog估算方法過大估計了TMD的相對位移。 (3)采用一種基于蒙特卡洛方法和模式搜索法的數(shù)值優(yōu)化方法對MTMD進行了參數(shù)優(yōu)化,并對MTMD的優(yōu)化參數(shù)進行了研究。數(shù)值分析表明,相比于STMD,MTMD具有更好的控制效果以及更廣的頻率控制寬度,在總質量比相同的情況下,MTMD中TMD個數(shù)越多,減振效果會更好,但各個TMD的最優(yōu)阻尼比會越小,因此各TMD的相對位移增加。 (4)通過改變被控結構的動力參數(shù),,進行了STMD與MTMD系統(tǒng)的魯棒性分析。分析表明,相比于被控結構阻尼比的偏移,TMD控制有效性對被控結構頻率的偏移更加敏感,增加TMD的質量比有助于提高魯棒性。 (5)考慮到TMD自身參數(shù)可能發(fā)生的偏離,建立了一種基于正態(tài)分布概率模型的自身參數(shù)偏離模型,并基于此偏離模型對STMD和MTMD的減振可靠性進行了研究。研究表明,STMD系統(tǒng)和MTMD系統(tǒng)中TMD的個數(shù)會對減振可靠性有一定影響。 (6)以綿陽市一座實際人行橋為數(shù)值算例,根據(jù)ANSYS分析以及現(xiàn)場實測獲得的橋梁動力特性參數(shù),進行了TMD減振的優(yōu)化設計和減振效果的數(shù)值分析,驗證了TMD能夠有效控制橋梁振動。
[Abstract]:Bridge structure is prone to vibration problems under the action of pedestrian load, vehicle load, strong wind and earthquake. Excessive vibration will affect the comfort and fatigue damage of the components. In order to suppress structural vibration, many vibration control methods have been proposed by scholars at home and abroad, among which the tuned Mass damper (TMD) is one of the most commonly used bridge vibration control methods. In this paper, the parameter optimization, robustness and damping reliability of STMD (single tuned Mass Damper, STMD) and MTMD (multiple Tuned Mass Dampers) are studied, and the parameter optimization design of a pedestrian bridge in Mianyang City is given. The main contents and achievements are as follows: (1) the main vibration forms of bridge structure and the main methods of vibration control are introduced. The development history, research status and engineering application of TMD control theory are summarized. The research contents of this paper are presented. (2) the parameters of STMD with damping of controlled structure are optimized and the optimum parameters of STMD are obtained by numerical method. The relative displacement of TMD is studied. The results show that Den Hartog's relative displacement estimation method based on energy dissipation equilibrium is only suitable for estimating the relative displacement of undamped structures in the resonance region (0.9/p1.1). Moreover, Den Hartog estimation method overestimates the relative displacement of TMD when structural damping is considered. (3) A numerical optimization method based on Monte Carlo method and pattern search method is used to optimize the parameters of MTMD. The optimization parameters of MTMD are studied. Numerical analysis shows that compared with STMD-MTMD has better control effect and wider frequency control width, the more TMD in MTMD has the same total mass ratio, the better the damping effect is, but the smaller the optimal damping ratio of each TMD is. Therefore, the relative displacement of each TMD is increased. (4) the robustness of STMD and MTMD systems is analyzed by changing the dynamic parameters of the structure under control. The analysis shows that the effectiveness of TMD control is more sensitive to the frequency shift than the damping ratio of the controlled structure, and increasing the mass ratio of TMD is helpful to improve the robustness. (5) considering the possible deviation of the parameters of the TMD itself, A parameter deviation model based on normal distribution probability model is established, and the reliability of STMD and MTMD is studied based on the deviation model. The results show that the number of TMD in STMD system and MTMD system will have a certain effect on the reliability of vibration reduction. (6) taking a practical pedestrian bridge in Mianyang as a numerical example, the dynamic characteristic parameters of bridge are obtained by ANSYS analysis and field measurement. The optimal design of TMD vibration reduction and the numerical analysis of the damping effect are carried out, and it is proved that TMD can effectively control the bridge vibration.
【學位授予單位】:湖南大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U441.3
【參考文獻】
相關期刊論文 前10條
1 華旭剛,陳政清;橋梁風致顫振臨界狀態(tài)的全域自動搜索法[J];工程力學;2002年02期
2 汪正興,任文敏,蘇繼宏,徐海鷹;多重調諧質量阻尼器參數(shù)優(yōu)化的一種改進算法及其應用[J];工程力學;2005年05期
3 樊健生;陳宇;聶建國;;人行橋的TMD減振優(yōu)化設計研究[J];工程力學;2012年09期
4 喻梅;廖海黎;李明水;馬存明;賈宏宇;羅楠;;基于經驗線性渦激力的橋梁渦激振動TMD控制[J];工程力學;2013年06期
5 袁小芳;王耀南;吳亮紅;;基于混沌變量的模式搜索法及其應用[J];湖南大學學報(自然科學版);2007年09期
6 張鳴祥;王建國;汪權;;大跨度橋梁多模態(tài)耦合顫振的TMD控制[J];計算力學學報;2012年03期
7 李春祥,劉艷霞,王肇民;質量阻尼器的發(fā)展[J];力學進展;2003年02期
8 李鴻晶;陸鳴;溫增平;羅韌;;汶川地震橋梁震害的特征[J];南京工業(yè)大學學報(自然科學版);2009年01期
9 陳政清;黃智文;王建輝;牛華偉;;橋梁用TMD的基本要求與電渦流TMD[J];湖南大學學報(自然科學版);2013年08期
10 項海帆,陳艾榮,顧明;調質阻尼器(TMD)對橋梁渦激共振的抑制[J];同濟大學學報(自然科學版);1994年02期
本文編號:2113965
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2113965.html