基于卡爾曼濾波的短時交通流量預測模型研究
本文選題:交通流量預測 + 智能交通 ; 參考:《沈陽工業(yè)大學》2014年碩士論文
【摘要】:隨著社會的進步,交通問題己日益受到人們的關注。為了優(yōu)化道路環(huán)境,保證交通暢通,減少空氣污染、汽車噪聲的危害,許多國家都在開展智能交通(ITS)的研究,作為ITS的重要研究領域——交通控制與誘導系統(tǒng)是智能交通系統(tǒng)建設的核心課題,而實現(xiàn)交通流誘導系統(tǒng)的關鍵問題是準確的短時交通流量預測,即如何有效地利用實時交通數(shù)據(jù)信息去滾動預測未來幾分鐘內(nèi)的交通狀況。 早在20世紀六七十年代,國外就開始將預測模型用于短時交通流量預測領域。交通流預測的研究模型有很多種,如:神經(jīng)網(wǎng)絡模型、多元線性回歸模型、時間序列模型、歷史趨勢模型、Kalman濾波模型等。而本文則著重研究Kalman濾波在交通流預測中的應用。 本文研究了交通流的靜態(tài)穩(wěn)定性以及突變性,,對交通流的可預測性進行判別。結合灰色關聯(lián)分析方法建立Kalman濾波交通流預測模型。本文對交通流在空間上分布的特點進行分析,利用灰色關聯(lián)分析方法,分析被測路段會受到哪些參數(shù)的影響。此外,本文為了改善Kalman濾波模型預測效果,提出了利用相鄰數(shù)周中相對應時間的交通流比值代替原始數(shù)據(jù),建立基于歷史數(shù)據(jù)的Kalman濾波交通流預測模型。本文將所建立預測模型與其他基于kalman濾波的交通流預測模型作對比,研究表明本文算法的計算模型性能指標要優(yōu)于其他預測模型。 本文利用模擬數(shù)據(jù)對上述預測模型及算法進行了驗證。實驗結果表明:灰色關聯(lián)分析能夠有效地分析出各項影響交通流的參數(shù),提高預測模型的適應性;以歷史數(shù)據(jù)、實時數(shù)據(jù)為基礎的預測模型,其預測效果要優(yōu)于只運用實時數(shù)據(jù)的交通流量預測模型,從而證明了該模型的適應性強,預測精度高。
[Abstract]:With the development of the society, people pay more and more attention to the traffic problem. In order to optimize the road environment, ensure the smooth flow of traffic, reduce air pollution and the harm of automobile noise, many countries are carrying out research on Intelligent Transportation (its). As an important research field of its, traffic control and guidance system is the core of its construction, and the key problem of realizing traffic flow guidance system is accurate short-term traffic flow forecasting. That is, how to use real-time traffic data effectively to predict traffic situation in the next few minutes. As early as 1960s and 1970s, foreign countries began to use forecasting models in the field of short-term traffic flow forecasting. There are many research models for traffic flow prediction, such as neural network model, multivariate linear regression model, time series model, historical trend model and Kalman filter model. This paper focuses on the application of Kalman filter in traffic flow prediction. In this paper, the static stability and catastrophe of traffic flow are studied, and the predictability of traffic flow is judged. The traffic flow prediction model of Kalman filter is established by using grey correlation analysis method. In this paper, the characteristics of traffic flow distribution in space are analyzed, and the influence of the parameters on the measured road sections is analyzed by using the grey correlation analysis method. In addition, in order to improve the prediction effect of Kalman filter model, a Kalman filtering traffic flow prediction model based on historical data is established by using the traffic flow ratio corresponding to the corresponding time in adjacent weeks instead of the original data. In this paper, the proposed prediction model is compared with other traffic flow prediction models based on kalman filter. The results show that the performance of the proposed algorithm is better than that of other models. In this paper, the simulation data are used to verify the above prediction model and algorithm. The experimental results show that the grey correlation analysis can effectively analyze the parameters that affect the traffic flow and improve the adaptability of the forecasting model, which is based on historical data and real-time data. The forecasting effect is better than the traffic flow forecasting model which only uses real time data, which proves that the model has strong adaptability and high prediction accuracy.
【學位授予單位】:沈陽工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U495;U491.1
【參考文獻】
相關期刊論文 前10條
1 叢玉良;陳萬忠;孫永強;陳建;;基于聯(lián)合卡爾曼濾波器的交通信息融合算法研究[J];公路交通科技;2010年07期
2 王軍;許宏科;蔡曉峰;孫磊;;基于BP神經(jīng)網(wǎng)絡的高速公路動態(tài)交通流預測[J];公路交通技術;2007年01期
3 金春玉;鄭瑞平;劉洪;李欣;;短時交通流預測研究[J];華東公路;2011年03期
4 戴施華;周欣榮;;Kalman濾波理論在短時交通預測上的應用[J];哈爾濱商業(yè)大學學報(自然科學版);2005年06期
5 楊兆升;馮金巧;張林;;基于卡爾曼濾波的交通信息融合方法[J];吉林大學學報(工學版);2007年05期
6 孫棣華;董均宇;廖孝勇;;基于GPS探測車的道路交通狀態(tài)估計技術[J];計算機應用研究;2007年02期
7 鄒亮;徐建閩;朱玲湘;;基于融合技術的道路交通狀態(tài)判別模型[J];清華大學學報(自然科學版);2007年S2期
8 李眉眉;丁晶;;混沌相空間的卡爾曼濾波模型及其應用[J];水電能源科學;2008年03期
9 林培群;徐建閩;傅惠;梁俊斌;;多分支BP網(wǎng)絡模型及其在車型分類中的應用[J];微計算機信息;2005年25期
10 劉冠良;劉曉華;;基于最優(yōu)信息融合卡爾曼濾波的預測控制算法[J];魯東大學學報(自然科學版);2009年01期
相關博士學位論文 前2條
1 姜延吉;多傳感器數(shù)據(jù)融合關鍵技術研究[D];哈爾濱工程大學;2010年
2 胡志輝;卡爾曼濾波理論及其在混沌通信中的應用研究[D];華南理工大學;2011年
本文編號:2096744
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2096744.html