基于ANSYS的小箱梁截面優(yōu)化設(shè)計(jì)
發(fā)布時(shí)間:2018-07-02 12:53
本文選題:截面優(yōu)化 + 小箱梁; 參考:《東北林業(yè)大學(xué)》2014年碩士論文
【摘要】:在中小跨徑的簡(jiǎn)支轉(zhuǎn)連續(xù)橋梁中,主梁截面形式主要有T形、空心板、工字形、箱形、組合箱形等。其中箱形截面被廣泛應(yīng)用是基于其截面特點(diǎn)優(yōu)于其他截面形式,結(jié)構(gòu)受力上箱梁為閉口薄壁截面,具有較好的截面抗彎和抗扭剛度,能有效的抵抗汽車荷載、風(fēng)荷載和自重等引起的彎矩和扭矩。相比T形截面梁橫向偏載下的各片梁受力更加的均勻,其受力整體性好;預(yù)制梁截面高度與寬度一般相差不大,使得梁體在施工與使用過(guò)程中都具有較好的穩(wěn)定性;從美觀角度上看,箱梁截面外形簡(jiǎn)潔,線條簡(jiǎn)單明了,適用于跨線橋、立交橋等。正是由于箱型截面梁橋的廣泛應(yīng)用所以對(duì)箱梁截面尺寸的優(yōu)化以取得更好的經(jīng)濟(jì)效益具有非常重要的實(shí)用意義。 本文依托實(shí)際工程項(xiàng)目,通過(guò)梁體預(yù)制施工時(shí)預(yù)埋混凝土傳感器,待成橋時(shí)對(duì)箱梁橋進(jìn)行荷載試驗(yàn),對(duì)加載下的橋梁進(jìn)行應(yīng)變和撓度的測(cè)量。利用ANSYS有限元軟件建立箱梁模型,模擬實(shí)際試驗(yàn)荷載作用下的箱梁橋,通過(guò)有限元分析后與實(shí)測(cè)數(shù)據(jù)對(duì)比分析,驗(yàn)證了有限元模型的合理性。 按照上面的建模規(guī)則建立優(yōu)化模型,利用ANSYS的優(yōu)化模塊,使用子問(wèn)題近似法在滿足規(guī)范要求的和使用條件下對(duì)設(shè)計(jì)荷載下的箱梁進(jìn)行抗彎承載能力的截面優(yōu)化設(shè)計(jì),得出小箱梁的截面優(yōu)化尺寸,并對(duì)其材料用量進(jìn)行經(jīng)濟(jì)效益分析。
[Abstract]:In the small and medium span simply supported continuous bridge, the main beam section is mainly T-shaped, hollow slab, I-shaped, box-shaped, combined box, and so on. The box section is widely used because its cross section is superior to other sections, and the box girder is a closed thin-walled section, which has good flexural and torsional stiffness, and can effectively resist the vehicle load. Bending moment and torque caused by wind load and deadweight. Compared with T-section beam under transverse eccentric load, the beam has a more uniform force, its stress integrity is good, the section height and width of the precast beam generally have little difference, so the beam body has better stability in the construction and use process. From an aesthetic point of view, box girder section shape is simple, simple and clear lines, suitable for span bridges, overpasses, etc. Because of the wide application of box girder bridge, it is of great practical significance to optimize the section size of box girder in order to obtain better economic benefits. This paper relies on the actual engineering project, through the beam body prefabricated construction pre-buried concrete sensor, waiting for the bridge to complete the load test of the box girder bridge, the strain and deflection of the bridge under the load measurement. The box girder model is established by ANSYS finite element software, and the box girder bridge under the actual test load is simulated. The rationality of the finite element model is verified by comparing the finite element analysis with the measured data. The optimization model is established according to the above modeling rules, and the optimization model is established by using the optimization module of ANSYS, and the sub-problem approximation method is used to optimize the section design of the box girder under the design load, which meets the requirements of the specification and under the conditions of use. The optimum size of the cross section of the box girder is obtained, and the economic benefit of its material consumption is analyzed.
【學(xué)位授予單位】:東北林業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U448.213;U442.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 王春生,徐岳,郝憲武;廣東伶仃洋跨海大橋非通航孔橋橋型方案設(shè)計(jì)[J];橋梁建設(shè);1999年02期
,本文編號(hào):2090187
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2090187.html
最近更新
教材專著