地震條件下高路堤邊坡穩(wěn)定性分析及震后檢測
本文選題:高路堤 + 地震; 參考:《北京交通大學(xué)》2014年碩士論文
【摘要】:摘要:邊坡穩(wěn)定性問題一直是巖土工程界的一個(gè)重要研究內(nèi)容,它涉及到土木工程的各個(gè)領(lǐng)域。隨著交通工程的蓬勃發(fā)展和規(guī)模的不斷加大,高路堤邊坡不斷出現(xiàn)在公路建設(shè)中,尤其在廣闊的西部地區(qū),有的邊坡甚至高達(dá)三四十米。暴雨、地震等自然災(zāi)害的頻繁發(fā)生更加加劇了邊坡破壞的風(fēng)險(xiǎn),邊坡穩(wěn)定性分析問題顯得很有必要,同時(shí),震后路堤質(zhì)量的檢測是一件繁瑣的工作,而地質(zhì)雷達(dá)的出現(xiàn)將會(huì)讓這一工作變得高效準(zhǔn)確,對節(jié)省人力、物力、財(cái)力具有重要意義。 本人在綜合考慮各種邊坡穩(wěn)定性分析方法及地震條件下邊坡穩(wěn)定性分析方法的基礎(chǔ)上,基于簡化的Bishop極限平衡法建立高路堤邊坡模型,采用改進(jìn)的蒙特卡羅技術(shù)搜索邊坡臨界滑動(dòng)面,該搜索方法與業(yè)內(nèi)人士豐富的實(shí)踐經(jīng)驗(yàn)相結(jié)合,搜索更加方便,更利于實(shí)現(xiàn)程序化。路堤模型基于實(shí)際情況,將高邊坡分為若干層,每層合理采用實(shí)際填料,通過windows窗口應(yīng)用程序?qū)Χ鄬犹钔粮呗返淘诘卣饤l件下的穩(wěn)定性系數(shù)進(jìn)行計(jì)算。程序可以計(jì)算出不同高度邊坡,不同坡腳、不同土層組合以及不同地震烈度甚至在浸水條件下邊坡的穩(wěn)定性安全系數(shù),同時(shí)可以看出安全系數(shù)隨邊坡各個(gè)參數(shù)變化的情況,能夠?yàn)槁返淌┕ぶ胁捎煤侠淼慕Y(jié)構(gòu)和參數(shù)選擇提供參考,具有現(xiàn)實(shí)意義。應(yīng)用程序采用C#語言編寫,界面友好、操作簡單、性能可靠。實(shí)現(xiàn)了邊坡最危險(xiǎn)滑動(dòng)面搜索和最小安全系數(shù)的計(jì)算以及結(jié)果的可視化輸出。本文總結(jié)震后路堤典型病害,并采用地質(zhì)雷達(dá)技術(shù)進(jìn)行探測,結(jié)果表明,地質(zhì)雷達(dá)可以快速、準(zhǔn)確的測出地震對邊坡造成的病害。 本文對青藏高原德令哈-香日德公路的一個(gè)路堤高邊坡進(jìn)行了計(jì)算,并對結(jié)果 進(jìn)行了分析。分析結(jié)果表明采用本文編制的程序計(jì)算結(jié)果與常用計(jì)算方法所得結(jié)果以及現(xiàn)場實(shí)際調(diào)查情況相吻合,說明該計(jì)算程序具有一定的可靠性和實(shí)用性。
[Abstract]:Absrtact: slope stability is always an important research content in geotechnical engineering, which involves various fields of civil engineering. With the vigorous development and scale of traffic engineering, the high embankment slope appears continuously in the highway construction, especially in the vast western area, some slopes are even as high as 30 to 40 meters. The frequent occurrence of natural disasters, such as rainstorms and earthquakes, has aggravated the risk of slope failure, and slope stability analysis is necessary. At the same time, the quality detection of embankment after the earthquake is a tedious task. The appearance of GPR will make this work more efficient and accurate, which is of great significance to save manpower, material resources and financial resources. On the basis of comprehensive consideration of various slope stability analysis methods and slope stability analysis methods under earthquake conditions, the author establishes the slope model of high embankment based on simplified Bishop limit equilibrium method. The improved Monte Carlo technique is used to search the critical sliding surface of the slope. The search method is combined with the rich practical experience of the industry, and the search is more convenient and more convenient for the realization of programming. Based on the actual situation, the embankment model divides the high slope into several layers, each layer reasonably using the actual filler, and calculates the stability coefficient of the multi-layer embankment under earthquake through windows window application program. The program can calculate the slope stability safety factor of different height slope, different slope foot, different soil layer combination, different earthquake intensity and even under the condition of flooding, at the same time, it can be seen that the safety factor varies with each parameter of slope. It can provide reference for reasonable structure and parameter selection in embankment construction. The application program is written in C # language, friendly interface, simple operation and reliable performance. The most dangerous sliding surface search, the calculation of the minimum safety factor and the visual output of the results are realized. In this paper, the typical diseases of embankment after earthquake are summarized, and the geological radar technique is used to detect the slope diseases caused by earthquake. The results show that the ground penetrating radar can detect the slope diseases caused by earthquake quickly and accurately. In this paper, a high slope of embankment of Delingha-Xiangride highway in Qinghai-Tibet Plateau is calculated, and the results are analyzed. The results of analysis show that the calculation results of the program compiled in this paper are in agreement with the results of common calculation methods and the actual investigation on the spot, which shows that the program has certain reliability and practicability.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U416.14
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉立平,雷尊宇,周富春;地震邊坡穩(wěn)定分析方法綜述[J];重慶交通學(xué)院學(xué)報(bào);2001年03期
2 彭蘇萍,楊峰,蘇紅旗;高效采集地質(zhì)雷達(dá)的研制及應(yīng)用[J];地質(zhì)與勘探;2002年05期
3 言志信;張森;張學(xué)東;段建;;地震邊坡失穩(wěn)機(jī)理及穩(wěn)定性分析[J];工程地質(zhì)學(xué)報(bào);2010年06期
4 何廣訥,楊斌;海堤地震穩(wěn)定性的概率分析[J];海洋工程;1995年01期
5 鄭紅雷;陸昊;榮澤飛;周踔昂;;下蜀土邊坡地震穩(wěn)定性分析方法對比研究[J];建筑經(jīng)濟(jì);2009年S1期
6 王志良;王秀艷;孫琳;;濕陷性黃土侵水前后抗剪強(qiáng)度變化規(guī)律研究——以河南鞏義地區(qū)濕陷性黃土為例[J];南水北調(diào)與水利科技;2012年03期
7 魏安;巖體裂隙網(wǎng)絡(luò)的計(jì)算機(jī)模擬及其應(yīng)用[J];西南交通大學(xué)學(xué)報(bào);1995年02期
8 汪小剛,陳祖煜,劉文松;應(yīng)用蒙特卡洛法確定節(jié)理巖體的連通率和綜合抗剪強(qiáng)度指標(biāo)[J];巖石力學(xué)與工程學(xué)報(bào);1992年04期
9 陳乃明,王如路,,劉寶琛;巖體節(jié)理網(wǎng)絡(luò)分形的計(jì)算機(jī)模擬研究[J];巖石力學(xué)與工程學(xué)報(bào);1995年03期
10 郭漢鈆;錐形邊坡穩(wěn)定性分析[J];巖石力學(xué)與工程學(xué)報(bào);1998年02期
相關(guān)博士學(xué)位論文 前1條
1 李煒;邊坡穩(wěn)定可靠性研究[D];大連理工大學(xué);2009年
本文編號(hào):2079706
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2079706.html