振動(dòng)壓路機(jī)無(wú)級(jí)調(diào)幅調(diào)頻實(shí)現(xiàn)的研究
本文選題:振動(dòng)壓路機(jī) + 控制系統(tǒng) ; 參考:《青島科技大學(xué)》2014年碩士論文
【摘要】:振動(dòng)壓路機(jī)作為一種在現(xiàn)代化工程建設(shè)中必不可少的基礎(chǔ)和路面碾壓設(shè)備。目前單軸旋轉(zhuǎn)激振的振動(dòng)壓路機(jī)多為常見,壓路機(jī)的振動(dòng)輪在激振力作用下產(chǎn)生振動(dòng),激振器機(jī)構(gòu)多是采用偏心塊或者偏心軸旋轉(zhuǎn),這種方式結(jié)構(gòu)簡(jiǎn)單,現(xiàn)在有多種激振器采用這種結(jié)構(gòu)形式,如單幅的激振器、雙幅的偏心塊疊加激振器、多幅的偏心塊換位疊加激振器、振蕩激振器等。但是這些機(jī)構(gòu)只能進(jìn)行有級(jí)調(diào)幅,并且不利于實(shí)現(xiàn)系統(tǒng)的自動(dòng)無(wú)級(jí)調(diào)幅控制。一般可通過(guò)采用定量馬達(dá)—變量泵的傳動(dòng)方式來(lái)完成壓路機(jī)的振動(dòng)頻率的調(diào)節(jié),其安裝過(guò)程和調(diào)節(jié)控制方式都比調(diào)幅方便的多。 本文設(shè)計(jì)的無(wú)級(jí)調(diào)幅調(diào)頻壓路機(jī)的振動(dòng)輪,無(wú)級(jí)調(diào)幅液壓控制系統(tǒng)采用齒條油缸—比例閥結(jié)構(gòu),,利用PID控制方法,采用PWM輸入控制信號(hào)方式,控制系統(tǒng)的采用可編程邏輯控制器為控制器,并編寫相應(yīng)的控制程序。本文采用電液比例閥控制定量馬達(dá)—變量泵來(lái)進(jìn)行無(wú)級(jí)調(diào)頻。無(wú)級(jí)調(diào)頻系統(tǒng)工作時(shí),給電液比例閥一定的電流驅(qū)動(dòng)伺服變量缸,從而工作泵輸出相應(yīng)排量驅(qū)動(dòng)馬達(dá)旋轉(zhuǎn),帶動(dòng)激振器工作。在本系統(tǒng)中安裝兩個(gè)高壓溢流閥卸載一定的高壓來(lái)保護(hù)系統(tǒng);還安裝補(bǔ)油閥,用來(lái)補(bǔ)償因泄露損失的液壓油,保證整個(gè)系統(tǒng)正常工作;系統(tǒng)中還安裝有沖洗閥,使整個(gè)系統(tǒng)中的液壓油能得到不斷的更新,不僅很好的散熱,還能系統(tǒng)清潔油路,本系統(tǒng)很好的實(shí)現(xiàn)了無(wú)級(jí)調(diào)幅調(diào)頻的功能。 為了驗(yàn)證本文設(shè)計(jì)的壓路機(jī)無(wú)級(jí)調(diào)幅調(diào)頻功能,搭建了一個(gè)試驗(yàn)臺(tái)對(duì)該振動(dòng)輪的各項(xiàng)性能進(jìn)行了全面的試驗(yàn)研究。通過(guò)多種數(shù)據(jù)采集儀器,對(duì)壓路機(jī)滾筒的的各項(xiàng)性能數(shù)據(jù)進(jìn)行了記錄收集,通過(guò)對(duì)這些數(shù)據(jù)分析,得到以下結(jié)論: 本課題設(shè)計(jì)的壓路機(jī)能夠順利實(shí)現(xiàn)無(wú)級(jí)調(diào)頻調(diào)幅功能,并且振幅的理論分析與設(shè)計(jì)實(shí)現(xiàn)的變化規(guī)律相一致,該方案在結(jié)構(gòu)上合理簡(jiǎn)單,不會(huì)增加壓路機(jī)太多的成本,而且能實(shí)現(xiàn)預(yù)計(jì)的功能需求,基于PID、PWM控制方法的PLC控制系統(tǒng),在多次開關(guān)機(jī)運(yùn)行調(diào)試后,系統(tǒng)非常穩(wěn)定,控制需求能很好的滿足。
[Abstract]:At present, the vibration roller with single axis rotating excitation is common, the vibration wheel of the roller produces vibration under the action of exciting force, and the exciter mechanism is mostly rotated by eccentric block or eccentric axis, which is simple in structure. At present, there are many kinds of exciters in this structure, such as single exciter, double eccentric block superposition exciter, multiple eccentric block transposition superposition exciter, oscillating exciter and so on. However, these mechanisms can only carry out stepwise amplitude modulation, and are not conducive to the automatic stepless amplitude modulation control of the system. Generally, the vibration frequency of the roller can be adjusted by using the drive mode of the quantitative motor and variable pump, and the installation process and the regulating control mode are much more convenient than the amplitude modulation. In this paper, the vibrating wheel of stepless amplitude modulation and frequency modulation roller is designed. The stepless amplitude modulation hydraulic control system adopts rack oil cylinder proportional valve structure, pid control method and PWM input control signal. The control system uses the programmable logic controller as the controller, and writes the corresponding control program. In this paper, electrohydraulic proportional valve is used to control quantitative motor-variable pump for stepless frequency modulation. When the stepless frequency modulation system is working, the servo variable cylinder is driven by a certain current of the electro-hydraulic proportional valve, so that the pump outputs the corresponding displacement to drive the motor to rotate and drive the exciter to work. Two high pressure relief valves are installed in this system to protect the system by unloading certain high pressure; oil filling valves are also installed to compensate for the leakage of hydraulic oil to ensure the normal operation of the whole system; there is also a flush valve installed in the system. So that the hydraulic oil in the whole system can be continuously updated, not only good heat dissipation, but also the system can clean the oil path, the system has achieved the function of stepless amplitude modulation and frequency modulation. In order to verify the stepless amplitude modulation and frequency modulation function of the roller designed in this paper, a test rig was set up to study the various performances of the vibratory wheel. Through a variety of data acquisition instruments, the performance data of roller are recorded and collected, and through the analysis of these data, The conclusions are as follows: the roller designed in this paper can realize the stepless frequency modulation and amplitude modulation function smoothly, and the theoretical analysis of the amplitude is consistent with the changing law of the design, and the scheme is reasonable and simple in structure. The PLC control system based on PID-PWM control method is very stable after running and debugging many times, and the control requirements can be satisfied very well.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U415.521
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曾威;劉亞平;侯鎖霞;葉紅玲;;基于MATLAB/Simulink的振動(dòng)主動(dòng)控制系統(tǒng)仿真[J];北京工業(yè)大學(xué)學(xué)報(bào);2006年S1期
2 曹源文,李志勇,梁乃興;風(fēng)積砂砂基壓實(shí)工藝和方法分析[J];重慶交通學(xué)院學(xué)報(bào);2004年04期
3 劉本學(xué);馮忠緒;鄧麗娜;;雙頻振動(dòng)壓路機(jī)的力學(xué)模型及仿真研究[J];中國(guó)工程機(jī)械學(xué)報(bào);2006年02期
4 郭建國(guó);振動(dòng)壓路機(jī)起振高壓的消除[J];工程機(jī)械;1999年01期
5 尹繼瑤;;振動(dòng)壓路機(jī)的振動(dòng)參數(shù)及其取值[J];建設(shè)機(jī)械技術(shù)與管理;2007年02期
6 歐文興;;振動(dòng)壓路機(jī)的主減振系統(tǒng)的設(shè)計(jì)研究[J];機(jī)電技術(shù);2009年03期
7 聶福全;楊晨;聶怡;;國(guó)外振動(dòng)壓路機(jī)的新型振動(dòng)技術(shù)[J];山東交通學(xué)院學(xué)報(bào);2006年04期
8 張勝;;振動(dòng)壓路機(jī)減振性能影響因素及評(píng)價(jià)指標(biāo)[J];交通世界(建養(yǎng).機(jī)械);2010年10期
9 趙昱東;我國(guó)振動(dòng)壓路機(jī)的新發(fā)展[J];建筑機(jī)械化;2002年02期
10 葛恒安;國(guó)外壓路機(jī)技術(shù)特點(diǎn)與產(chǎn)品發(fā)展淺析[J];建筑機(jī)械;2001年07期
相關(guān)博士學(xué)位論文 前1條
1 馬學(xué)良;振蕩壓路機(jī)壓實(shí)動(dòng)力學(xué)及壓實(shí)過(guò)程控制關(guān)鍵技術(shù)的研究[D];長(zhǎng)安大學(xué);2009年
本文編號(hào):2077676
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2077676.html