天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 交通工程論文 >

跨線彎梁橋在超高車輛撞擊下的動態(tài)響應(yīng)分析

發(fā)布時間:2018-06-17 14:22

  本文選題:曲線梁橋 + 超高車輛; 參考:《太原理工大學(xué)》2014年碩士論文


【摘要】:隨著高速公路的建設(shè)和城市道路的進一步發(fā)展,道路網(wǎng)中立交橋日益增多。為了使橋梁設(shè)計滿足路線平面布置的需要及增添城市景觀,一般需要采用曲線橋,并且主要采用曲線梁橋的形式。城市立交中曲線梁橋結(jié)構(gòu)也得到了廣泛的應(yīng)用,尤其在立交的匝道設(shè)計中應(yīng)用最廣。隨著城市道路中曲線梁橋的廣泛應(yīng)用,相應(yīng)的問題和事故也隨之而來。限于匝道橋有限的凈空高度,或者錯誤駕駛,超高車輛撞擊跨線橋梁的事故屢見不鮮。因此,開展曲線梁橋在超高車輛撞擊下的損傷機理和防護措施具有重要的工程意義。 然而,超高車輛撞擊曲線梁橋是個極其復(fù)雜的動力過程,而且曲線梁橋復(fù)雜的“彎扭耦合”作用,導(dǎo)致彎梁橋自身存在很多如曲線梁橋的平面變形問題、主梁腹板開裂問題以及支座脫空等問題還沒有很好地解決。用試驗方法模擬代價過于昂貴,本文基于高精度有限元軟件ABAQUS,討論了超高車輛撞擊曲線梁橋過程中的損傷機理和能量轉(zhuǎn)換方式,并研究了不同支承方式下,曲線梁橋在超高車輛撞擊下的彎矩、剪力分布以及支座損傷狀況,得出以下結(jié)論: 一、討論了不同曲率半徑下的曲線梁橋在不同撞擊速度下的局部損傷和整體性破壞: (1)曲率半徑越小,撞擊荷載作用下產(chǎn)生的應(yīng)力分布越集中,應(yīng)力峰值越大; (2)曲線梁橋在超高車輛撞擊下產(chǎn)生的局部性損傷隨著曲率半徑的減小而增大,而曲線梁橋的整體損傷主要表現(xiàn)為沿著豎向軸和行車方向的扭轉(zhuǎn),即“彎扭耦合”的作用效應(yīng); 二、進行了不同曲率半徑下的曲線梁橋在不同撞擊速度下的能量轉(zhuǎn)換和模態(tài)分析: (1)撞擊系統(tǒng)的能量轉(zhuǎn)換方式為撞擊動能轉(zhuǎn)化為系統(tǒng)的變性能(彈性應(yīng)變能和塑性應(yīng)變能)。 (2)在模態(tài)分析中,曲線梁橋的振動集中在X-ROTATION和Z-ROTATION,即“彎扭耦合”效應(yīng),印證了結(jié)論一的結(jié)果; 三、討論了不同多跨超靜定曲線梁橋的三種不同支承方式:1)兩端點均為“抗扭支承”,中間為“點鉸支承”;2)當(dāng)跨數(shù)較多時,梁端點設(shè)“抗扭支承”,中間跨設(shè)置一個“抗扭支承”,其余都為“點鉸支承”;3)為減小扭矩對主梁的作用,梁端設(shè)抗扭支承,中間跨設(shè)置向外側(cè)的偏心鉸支承。并進行了在三種不同支承方式下主梁的受力分析: 1)相對于中間跨設(shè)置點鉸支座的彎梁橋,中間跨設(shè)置了帶預(yù)偏心的點鉸支座的彎梁橋,抗扭增大,在抵抗撞擊荷載引起的彎矩時,比不帶預(yù)偏心的點鉸支座處產(chǎn)生的彎矩偏大,這是由于由于預(yù)偏心的作用,使得各個支座反力在點鉸支座處產(chǎn)生的彎矩偏大; 2)相對于中間跨設(shè)置點鉸支座(包括帶偏心的點鉸支座)的彎梁橋,中間跨增設(shè)抗扭支座的彎梁橋在撞擊力荷載的作用下,支座受到的破壞力更大,主梁變形更嚴重。為了保證結(jié)構(gòu)受力合理,在工程應(yīng)用中,應(yīng)將中間跨設(shè)置的抗扭支座盡量隔開設(shè)置,以保證該支承區(qū)域支座不會發(fā)生剪切破壞和錯位脫空。
[Abstract]:With the construction of the expressway and the further development of the urban road, the overpass is increasing in the road network. In order to make the bridge design meet the needs of the layout of the route and add the urban landscape, the curve bridge is generally used and the curved bridge is mainly used. The curved bridge structure in the urban vertical intersection has also been widely used. It is especially widely used in the ramp design of the interchange. With the wide application of the curved bridge in the urban road, the corresponding problems and accidents are also followed. The accidents of the flyover with the limited clearance of the ramp bridge, or the wrong driving, are common in the cross line bridges. Injury mechanism and protective measures are of great engineering significance.
However, the super high vehicle impact curve beam bridge is a very complicated dynamic process, and the complex "bending and torsion coupling" effect of the curved beam bridge leads to a lot of curved bridge itself, such as the plane deformation of the curved bridge, the problems of the web cracking of the main beam and the support to be empty are not well solved. Yu Anggui, based on the high precision finite element software ABAQUS, this paper discusses the damage mechanism and energy conversion mode in the process of the super high vehicle impact curve beam bridge, and studies the bending moment, the shear distribution and the damage condition of the support of the curved beam bridge under the impact of the super high vehicle under the different supporting methods.
First, local damage and global failure of curved girder bridges with different curvature radius at different impact velocities are discussed.
(1) the smaller the radius of curvature is, the more concentrated the stress distribution is, the higher the stress peak.
(2) the local damage of the curved bridge under the impact of the ultra high vehicle increases with the decrease of the radius of curvature, and the overall damage of the curved beam bridge is mainly manifested by the torsion coupling along the vertical axis and the driving direction, that is the effect of "bending and torsion coupling".
Two, energy conversion and modal analysis of curved girder bridges with different curvature radius at different impact velocities are carried out.
(1) the energy conversion mode of the impact system is the kinetic energy of impact, which is transformed into the denaturation energy (elastic strain energy and plastic strain energy) of the system.
(2) in modal analysis, the vibration of curved girder bridges is concentrated in X-ROTATION and Z-ROTATION, that is, the effect of "bending torsion coupling", which confirms the conclusion of the conclusion.
Three, the three different supporting methods of different span statically indeterminate curved girder bridges are discussed: 1) both ends are "anti torsion support", and the middle is "point hinge support"; 2) when the span number is more, the end point of the beam is set "anti torsion support", the middle span is set up a "anti torsion support", the rest are "point hinge support" and 3) to reduce the torque to the main beam. The torsion support is installed at the end of the beam, and the eccentric hinge is supported to the outer side of the middle span. The stress analysis of the main girder under three different supporting modes is carried out.
1) the bending beam bridge with a point hinge bearing with pre eccentricity is set in the middle span of a curved beam bridge with a pre eccentricity point hinge support. The bending moment is larger than that of the point hinge support without pre eccentricity. This is due to the effect of pre eccentricity, which makes each support counterforce at the point hinge support. The bending moment is larger.
2) relative to the curved beam bridge with the middle span set point hinge bearing (including the point hinge bearing with eccentric point), the bending beam bridge with the middle span added to the torsion bearing is more destructive under the impact force load, and the main beam is more deformed. In order to ensure the rational structure, the torsional support should be set in the middle span as far as possible in the engineering application. Separate settings to ensure that shear failure and dislocation void will not occur in the bearing area.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U441

【參考文獻】

相關(guān)期刊論文 前10條

1 姜沐;質(zhì)量塊對剛塑性簡支梁撞擊的動力響應(yīng)[J];彈道學(xué)報;2002年01期

2 陸新征;張炎圣;何水濤;盧嘯;;超高車輛撞擊橋梁上部結(jié)構(gòu)研究:損壞機理與撞擊荷載[J];工程力學(xué);2009年S2期

3 張炎圣;陸新征;葉列平;何水濤;;超高車輛-橋梁上部結(jié)構(gòu)碰撞荷載精細有限元模擬與簡化計算[J];工程力學(xué);2011年01期

4 吳晶;船舶-橋梁碰撞計算研究進展[J];廣東交通職業(yè)技術(shù)學(xué)院學(xué)報;2004年04期

5 劉建成,顧永寧,胡志強;橋墩在船橋碰撞中的響應(yīng)及損傷分析[J];公路;2002年10期

6 劉佳林,趙強,甘英,寧曉駿;汽車撞擊城市立交橋墩后對橋墩結(jié)構(gòu)的影響[J];交通標準化;2005年08期

7 張炎圣;陸新征;;大學(xué)生結(jié)構(gòu)設(shè)計大賽中的計算機仿真分析[J];力學(xué)與實踐;2009年04期

8 張偉東,孫韶峰,朱德功;立交橋梁防沖撞裝置的設(shè)計與使用[J];鐵道建筑;2003年01期

9 雷正保;周屏艷;顏海棋;錢小敏;;汽車-護欄系統(tǒng)耐撞性研究的有限元模型[J];中國安全科學(xué)學(xué)報;2006年08期

10 鄧育林;彭天波;李建中;;地震作用下橋梁結(jié)構(gòu)橫向碰撞模型及參數(shù)分析[J];振動與沖擊;2007年09期



本文編號:2031352

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2031352.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9a3b1***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com