青島地區(qū)粉質(zhì)粘土動力特性及其與地鐵隧道結(jié)構(gòu)動響應研究
本文選題:青島地鐵 + 隧道; 參考:《青島理工大學》2014年碩士論文
【摘要】:近十多年來,隨著城市化進程的加快,城市人口、城市交通地域規(guī)劃和城市生態(tài)環(huán)境都面臨巨大的壓力。在大力改善地面交通的同時,城市地下空間的開發(fā)和利用已成為眾所關(guān)心的熱點。本文以青島正在興建的地鐵為研究對象。青島地鐵在地下穿越不同的地質(zhì)土層,其中擬建的地鐵一號線在城陽區(qū)出現(xiàn)穿越第四系上更新統(tǒng)沖洪積粉質(zhì)粘土層(Q3al+pl)段。我們通過對青島第四系沖洪積粉質(zhì)粘土進行室內(nèi)動三軸試驗,研究其動力特性。在試驗得到第四系上更新統(tǒng)沖洪積粉質(zhì)粘土相應動參數(shù)的基礎上,對青島地區(qū)穿越第四系上更新統(tǒng)沖洪積粉質(zhì)粘土地質(zhì)類型的三種不同形狀地鐵隧道,應用ANSYS軟件對其進行動響應分析。主要研究內(nèi)容及其研究成果有: 1.青島地區(qū)第四系上更新統(tǒng)沖洪積粉質(zhì)粘土動力特性的研究。對青島地鐵線路下的第四系上更新統(tǒng)沖洪積粉質(zhì)粘土進行室內(nèi)動三軸試驗,得到該土的動應力-應變關(guān)系、動彈性模量與圍壓的關(guān)系、動剪切模量與動剪應變的關(guān)系、初始動彈性模量Ed0的取值范圍、起始動剪切模量Gd0和最大動剪應力y與軸向固結(jié)應力的關(guān)系、阻尼比與軸向固結(jié)應力的關(guān)系及阻尼比的取值范圍等一系列動力特性規(guī)律。具體研究成果有: (1)青島標準層序第十一層第四系上更新統(tǒng)沖洪積粉質(zhì)粘土的動應力-應變關(guān)系符合雙曲線模型,并且動彈性模量的倒數(shù)1/Ed和動應變d之間近似為直線關(guān)系,得到不同圍壓下1/Ed和d的擬合直線關(guān)系式。 (2)土的動彈性模量隨動應變的增大而減小,,隨圍壓的增大而增大。土的動剪切模量隨動剪應變的增大而減小。得到初始動彈模Ed0的取值范圍為31-48MPa。 (3)發(fā)現(xiàn)土的起始動剪切模量Gd0和最大動剪應力y與軸向固結(jié)應力間均有良好的冪函數(shù)關(guān)系,并通過試驗數(shù)據(jù)擬合得到冪函數(shù)關(guān)系式:Gd0=1.19(Kc3c)0.483,y=1.304(Kc3c)0.582。 (4)固結(jié)圍壓3和固結(jié)比Kc對阻尼比的影響較小,阻尼比隨剪應變γd的增大而逐漸減小,且當γd接近0.002時阻尼比穩(wěn)定于0.01。 2.介紹動力有限元法分析地下結(jié)構(gòu)動力問題的理論和模擬計算步驟以及ANSYS基于有限元理論的彈塑性DP模型。 3.確定列車振動荷載。根據(jù)前人經(jīng)驗和現(xiàn)有研究成果用人工激勵函數(shù)來模擬列車振動荷載,得到列車振動荷載隨時間變化的時程曲線。 4.在大型通用有限元分析軟件ANSYS上建立三種不同形狀隧道結(jié)構(gòu)動力有限元模型,應用粉質(zhì)粘土動力特性試驗結(jié)果和青島地鐵1號線勘察資料,對隧道體系從開挖到施加車輛振動荷載進行數(shù)值模擬,得到隧道結(jié)構(gòu)的內(nèi)力和動響應。通過對隧道內(nèi)力和動響應的分析得出以下結(jié)論: (1)在粉質(zhì)粘土層中,圓形地鐵隧道受力最合理,建議擬建的地鐵1號線穿越粉質(zhì)粘土層隧道采用圓形襯砌,應用盾構(gòu)技術(shù)。 (2)列車振動荷載作用下,不同形狀的襯砌動響應內(nèi)力變化較小,所以列車振動荷載并不是影響隧道結(jié)構(gòu)穩(wěn)定與安全性的主要因素。
[Abstract]:In the last more than 10 years, with the acceleration of urbanization process, urban population, urban transportation regional planning and urban ecological environment are facing enormous pressure. While improving the ground traffic, the development and utilization of urban underground space has become a hot topic of concern. This paper takes the subway being built in Qingdao as the research object. The Qingdao subway is the research object. In the underground crossing different geological soil layers, the proposed Metro Line 1 appears in the Quaternary upper Pleistocene alluvial silty clay layer (Q3al+pl) section in Chengyang area. Through the laboratory dynamic three axis test of the Quaternary flushing silty clay in Qingdao, the dynamic characteristics of the quaternary system are studied. On the basis of the corresponding dynamic parameters of the clay, the response analysis of three different shapes of subway tunnels of the Quaternary upper Pleistocene alluvial silty clay in the Qingdao area was analyzed by ANSYS software. The main research content and the research results were as follows:
1. study on the dynamic characteristics of the alluvial silty clay in the Quaternary upper Pleistocene in the Qingdao area. The dynamic stress-strain relationship of the Quaternary upper Pleistocene silty clay under the Qingdao subway line was tested, and the relationship between the dynamic stress and strain, the relationship between the dynamic elastic modulus and the confining pressure, the relationship between the dynamic shear modulus and the dynamic shear strain, and the initial dynamic elasticity were obtained. The range of the value of the modulus Ed0, the relationship between the initial dynamic shear modulus Gd0 and the maximum dynamic shear stress y and the axial consolidation stress, the relationship between the damping ratio and the axial consolidation stress and the range of the damping ratio, and so on. The specific research results are as follows:
(1) the dynamic stress-strain relationship of the alluvial silty clay in the upper Pleistocene of the eleventh layer of the Qingdao standard sequence is in accordance with the hyperbolic model, and the reciprocal 1/Ed of the dynamic elastic modulus and the dynamic strain D are approximately linear, and the fitting linear relation of 1/Ed and D under different confining pressures is obtained.
(2) the dynamic elastic modulus of the soil decreases with the increase of the dynamic strain, and increases with the increase of the confining pressure. The dynamic shear modulus of the soil decreases with the increase of the dynamic shear strain. The range of the initial dynamic elastic modulus Ed0 is 31-48MPa.
(3) it is found that the initial dynamic shear modulus Gd0 and the maximum dynamic shear stress y have a good power function relation between the axial consolidation stress and the axial consolidation stress, and the power function formula is obtained by fitting the experimental data: Gd0=1.19 (Kc3c) 0.483, y=1.304 (Kc3c) 0.582.
(4) the influence of the consolidation confining pressure 3 and the consolidation ratio Kc on the damping ratio is smaller, and the damping ratio decreases gradually with the increase of shear strain gamma D, and the damping ratio is stable when the gamma D is close to 0.002.
2. introduce the theoretical and simulation steps of dynamic finite element method to analyze the dynamic problems of underground structures and the elasto-plastic DP model of ANSYS based on finite element theory.
3. the vibration load of the train is determined. According to the previous experience and the existing research results, the artificial excitation function is used to simulate the train vibration load, and the time history curve of the train vibration load changes with time is obtained.
4. the dynamic finite element model of three different shape tunnel structures is established on the large general finite element analysis software ANSYS. The dynamic characteristics test results of the silty clay and the survey data of the Qingdao subway line 1 are used to simulate the tunnel system from excavation to the vibration load of the vehicle, and the internal force and dynamic response of the tunnel structure are obtained. The following conclusions can be drawn from the analysis of tunnel internal force and dynamic response.
(1) in the silty clay layer, the force of the circular subway tunnel is most reasonable. It is suggested that the proposed subway line 1 pass through the circular lining in the tunnel of the silty clay layer and apply the shield technology.
(2) under the action of the vibration load of the train, the internal force of the dynamic response of the lining of different shapes is less, so the vibration load of the train is not the main factor affecting the stability and safety of the tunnel structure.
【學位授予單位】:青島理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U231.1;U452.11
【相似文獻】
相關(guān)期刊論文 前10條
1 榮見華,葛祖德,姚起杭;動態(tài)優(yōu)化中的動響應高階修改及靈敏度分析[J];航空學報;1992年09期
2 張志林,張啟橋,李銘興;飛機圓弧風擋鳥撞動響應分析[J];航空學報;1992年09期
3 榮見華;;利用動響應數(shù)據(jù)修正動力模型的一種方法[J];機械強度;1992年03期
4 何連珠,趙沛霖;復合材料構(gòu)件發(fā)射導彈的動響應分析[J];航空學報;1992年08期
5 謝蘭生,孫良新,范緒箕;非線性粘彈性結(jié)構(gòu)鳥撞擊動響應分析[J];南京航空航天大學學報;1995年06期
6 葉長水;萬小朋;趙美英;;采用縱橫扭一體化建模技術(shù)分析火箭牽制釋放過程動響應[J];航空工程進展;2012年02期
7 駱東平,謝官模;環(huán)肋柱殼在流場中的穩(wěn)態(tài)動響應[J];艦船科學技術(shù);1993年05期
8 姚熊亮;龐福振;許維軍;;加筋球冠結(jié)構(gòu)在靜動載荷作用下的動響應分析[J];中國造船;2007年01期
9 卜建清,袁向榮,滿洪高,高勇利;利用動響應進行結(jié)構(gòu)修改的一種方法[J];石家莊鐵道學院學報;1999年01期
10 譚林森;組合柱殼在流場中受沖擊載荷作用動響應分析[J];華中理工大學學報;1998年04期
相關(guān)會議論文 前4條
1 滕蓓;陸曄;陳小平;祁恩榮;;大型LNG船液艙晃蕩結(jié)構(gòu)動響應研究[A];紀念徐秉漢院士船舶與海洋結(jié)構(gòu)力學學術(shù)會議論文集[C];2011年
2 張橋;張衛(wèi)紅;朱繼宏;;動響應拓撲優(yōu)化設計改進[A];第十屆全國振動理論及應用學術(shù)會議論文集(2011)下冊[C];2011年
3 吳有生;張效慈;司馬燦;崔維成;林吉如;;我國船舶水彈性力學研究的部分進展[A];固體力學進展及應用——慶賀李敏華院士90華誕文集[C];2007年
4 蔡婧;吳恒立;;推力樁動力響應的計算[A];第八屆全國結(jié)構(gòu)工程學術(shù)會議論文集(第Ⅲ卷)[C];1999年
相關(guān)重要報紙文章 前1條
1 潘志康 鄧惠平;IDS是怎樣實現(xiàn)響應和告警的?[N];網(wǎng)絡世界;2002年
相關(guān)博士學位論文 前1條
1 管子武;蝙蝠平飛時其模型翼主動大變形氣動響應及被動變形效應研究[D];中國科學技術(shù)大學;2014年
相關(guān)碩士學位論文 前4條
1 胡競中;沖擊環(huán)境下船舶大型設備與船體結(jié)構(gòu)一體化耦合動響應研究[D];哈爾濱工程大學;2009年
2 于馨;Spar平臺渦激運動對立管的動響應及疲勞分析[D];大連理工大學;2010年
3 隋學斌;青島地區(qū)粉質(zhì)粘土動力特性及其與地鐵隧道結(jié)構(gòu)動響應研究[D];青島理工大學;2014年
4 高偉;液體載貨船運動響應的模型試驗研究[D];大連理工大學;2008年
本文編號:2028347
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2028347.html