大跨窄鋼桁加勁梁懸索橋氣動(dòng)性能研究
本文選題:大跨鋼桁懸索橋 + 顫振導(dǎo)數(shù) ; 參考:《中南大學(xué)》2014年碩士論文
【摘要】:摘要:鋼桁架懸索橋以其跨越能力較強(qiáng)、造價(jià)低廉等優(yōu)點(diǎn),成為了跨越峽谷、河流以及水庫(kù)的有效工具。由于這種橋梁的缺點(diǎn)是橋面窄、桁高矮、輕而柔、結(jié)構(gòu)阻尼小,對(duì)風(fēng)的作用十分敏感,因此其抗風(fēng)性能是決定橋梁設(shè)計(jì)方案的關(guān)鍵因素,對(duì)鋼桁架懸索橋氣動(dòng)性能的研究具有重要意義。 本文借助數(shù)值模擬和風(fēng)洞試驗(yàn)方法,對(duì)石登懸索橋主梁氣動(dòng)力系數(shù)和顫振穩(wěn)定性進(jìn)行了深入研究,完成的主要工作有: 1、討論了實(shí)面積比和間距比對(duì)主桁架各桿件風(fēng)載阻力系數(shù)的影響;另外分析了H型和矩形截面形式的桿件對(duì)主桁架節(jié)段三分力系數(shù)的影響。 2、建立了石登懸索橋在施工和成橋狀態(tài)下主梁的三維CFD數(shù)值分析模型,探討了風(fēng)速、風(fēng)攻角及主桁架間距比對(duì)主梁三分力系數(shù)的影響。 3、開(kāi)展了石凳懸索橋主梁節(jié)段模型靜力三分力試驗(yàn)研究。分別制作了縮尺比1:15的主梁施工狀態(tài)及成橋狀態(tài)節(jié)段模型,得到了不同風(fēng)速及不同風(fēng)攻角下主梁的三分力系數(shù),并對(duì)數(shù)值模擬和風(fēng)洞試驗(yàn)結(jié)果進(jìn)行了比較分析。 4、建立了懸索橋成橋狀態(tài)主梁數(shù)值模型,計(jì)算了懸索橋成橋狀態(tài)主梁的顫振導(dǎo)數(shù),根據(jù)Scanlan推導(dǎo)的顫振臨界風(fēng)速計(jì)算方法得到成橋狀態(tài)顫振臨界風(fēng)速。另外,探討了間距比對(duì)主梁顫振穩(wěn)定性的影響。
[Abstract]:Abstract: steel truss suspension bridge has become an effective tool for crossing canyons, rivers and reservoirs because of its advantages of strong span ability and low cost. Because the disadvantages of this kind of bridge are narrow deck, short truss, light and soft structure, low damping, and sensitive to wind, its wind-resistant performance is the key factor to determine the design scheme of the bridge. It is of great significance to study the aerodynamic performance of steel truss suspension bridge. The aerodynamic coefficient and flutter stability of the main girder of the steel truss suspension bridge are studied in this paper by means of numerical simulation and wind tunnel test. The main works are as follows: 1. The effect of real area ratio and distance ratio on wind load resistance coefficient of main truss member is discussed. In addition, the influence of H-shaped and rectangular cross-section members on the three-point force coefficient of the main truss segment is analyzed. 2. The three-dimensional CFD numerical analysis model of the main girder of the Shiden suspension bridge under the conditions of construction and completion is established, and the wind speed is discussed. The influence of wind attack angle and the ratio of main truss spacing on the three-point force coefficient of the main girder. 3. The static three-point test study of the main girder segment model of the stone bench suspension bridge was carried out. The segmental models of the construction state of the main beam and the state of the bridge are made respectively, and the three-point force coefficient of the main girder under different wind speed and angle of attack is obtained. The results of numerical simulation and wind tunnel test are compared and analyzed. 4. The numerical model of suspension bridge is established, and the flutter derivative of suspension bridge is calculated. The flutter critical velocity of bridge is obtained by the method of calculating flutter critical velocity derived by Scanlan. In addition, the effect of the spacing ratio on the flutter stability of the main beam is discussed.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:U448.25;U441.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 康順;計(jì)算域?qū)FD模擬結(jié)果的影響[J];工程熱物理學(xué)報(bào);2005年S1期
2 李薇;胡兆同;李加武;張茜;;橋梁斷面三分力系數(shù)數(shù)值模擬[J];公路交通科技;2012年05期
3 龍躍海;牛華偉;劉榕;張志田;;矮寨特大橋鋼桁梁懸索橋顫振穩(wěn)定性能研究[J];中外公路;2011年06期
4 祝志文;夏昌;;基于兩種湍流模型的橋梁顫振導(dǎo)數(shù)識(shí)別研究及比較[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年11期
5 曹豐產(chǎn),項(xiàng)海帆,陳艾榮;橋梁斷面的氣動(dòng)導(dǎo)數(shù)和顫振臨界風(fēng)速的數(shù)值計(jì)算[J];空氣動(dòng)力學(xué)學(xué)報(bào);2000年01期
6 劉小平;張敏;劉晶;許彬;;商用軟件GAMBIT的解析和應(yīng)用[J];南京工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年01期
7 周志勇;;橋梁斷面雷諾數(shù)效應(yīng)數(shù)值模擬研究[J];空氣動(dòng)力學(xué)學(xué)報(bào);2009年06期
8 戴偉;馬如進(jìn);;上海閔浦大橋桁架結(jié)構(gòu)主梁斜風(fēng)下的氣動(dòng)力參數(shù)研究[J];上海公路;2009年01期
9 項(xiàng)海帆;進(jìn)入21世紀(jì)的橋梁風(fēng)工程研究[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年05期
10 陳政清,于向東;大跨橋梁顫振自激力的強(qiáng)迫振動(dòng)法研究[J];土木工程學(xué)報(bào);2002年05期
,本文編號(hào):2005711
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/2005711.html