復雜場景下車輛(動目標)的識別和跟蹤技術研究
發(fā)布時間:2018-05-31 23:11
本文選題:混合高斯模型 + 陰影消除; 參考:《南京航空航天大學》2014年碩士論文
【摘要】:在目前的智能交通系統(tǒng)中,對車輛的識別和跟蹤一直是一個核心的環(huán)節(jié),它能夠提供各種動態(tài)的交通環(huán)境信息,便于統(tǒng)一管理和調(diào)度,緩解交通擁擠和減少交通事故,因此對車輛的準確識別和長期跟蹤一直是智能交通監(jiān)控的研究熱點。本文重點研究了車輛的識別和跟蹤理論,從四個步驟重點論述了車輛的檢測、識別和跟蹤方法,并用具體的實驗證明了本文算法的可靠性和有效性。具體的工作如下: (1)提出了一種基于改進的混合高斯模型的動目標檢測算法,,該算法通過幀間匹配度信息反饋改變了傳統(tǒng)方法的學習規(guī)則,克服了車輛檢測斷裂或分離的缺陷,排除了車輛和環(huán)境對背景學習的干擾。實驗表明,該方法對于提取動目標區(qū)域較經(jīng)典方法更加準確。 (2)提出了一種基于HSV色彩空間法和混合高斯模型的陰影檢測算法,該算法通過人工采集方法和HSV色彩空間法來獲得陰影樣本,并利用期望最大法對陰影訓練樣本估計模型參數(shù),獲得的混合高斯模型用來區(qū)分車輛和陰影。實驗結果表明該方法可以有效分離車輛和陰影。 (3)采用了7個Hu不變距、分散度、長寬比和緊湊度組成10維的形狀特征向量以及三層BP神經(jīng)網(wǎng)絡對行人、大車、小車、自行車或者摩托車這四類目標進行分類,實驗結果表明通過樣本訓練出來的神經(jīng)網(wǎng)絡分類器可以對這四類目標有效分類。 (4)提出了一種改進的TLD跟蹤算法,該算法結合原來的單分類器,加入了基于Haar特征和在線Adaboost方法的分類器,構成了一種半監(jiān)督協(xié)同訓練的分類器,提高了分類器的泛化能力,實驗結果表明該方法可以進一步提高跟蹤效果。
[Abstract]:In the current intelligent transportation system, the identification and tracking of vehicles is always a core link. It can provide a variety of dynamic traffic environment information, facilitate unified management and scheduling, alleviate traffic congestion and reduce traffic accidents. Therefore, the accurate identification and long-term tracking of vehicles has always been the research hotspot of intelligent traffic monitoring. This paper focuses on the theory of vehicle recognition and tracking, discusses the detection, recognition and tracking methods of vehicles from four steps, and proves the reliability and effectiveness of this algorithm by experiments. The specific work is as follows: (1) A moving target detection algorithm based on the improved hybrid Gao Si model is proposed. The algorithm changes the learning rules of the traditional methods through the information feedback of the matching degree between frames, and overcomes the defect of vehicle detection breaking or separation. The interference of vehicle and environment to background learning is eliminated. Experiments show that the proposed method is more accurate than the classical method in extracting moving target regions. (2) A shadow detection algorithm based on HSV color space method and hybrid Gao Si model is proposed. The shadow sample is obtained by artificial acquisition and HSV color space method, and the model parameters are estimated by the expected maximum method. The hybrid Gao Si model is obtained to distinguish vehicles from shadows. The experimental results show that this method can effectively separate vehicle from shadow. Using seven Hu invariants, dispersion, aspect ratio and compactness, a 10-dimensional shape feature vector and a three-layer BP neural network are used to classify pedestrian, cart, car, bicycle or motorcycle. The experimental results show that the neural network classifier trained by the samples can effectively classify the four kinds of targets. In this paper, an improved TLD tracking algorithm is proposed, which combines the original single classifier and adds a classifier based on Haar features and online Adaboost method. It constitutes a semi-supervised cooperative training classifier and improves the generalization ability of the classifier. Experimental results show that this method can further improve the tracking effect.
【學位授予單位】:南京航空航天大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U495
【參考文獻】
相關期刊論文 前10條
1 黃信想;劉秉瀚;;基于HSV色彩空間的云模型車輛陰影檢測[J];福州大學學報(自然科學版);2008年06期
2 吳小強,李鵬,曲衛(wèi)民;智能交通系統(tǒng)研究回顧與展望[J];國外公路;2000年04期
3 顏佳;吳敏淵;;遮擋環(huán)境下采用在線Boosting的目標跟蹤[J];光學精密工程;2012年02期
4 朱峰;羅立民;宋余慶;陳健美;左欣;;基于自適應空間鄰域信息高斯混合模型的圖像分割[J];計算機研究與發(fā)展;2011年11期
5 郁梅,蔣剛毅,郁伯康;智能交通系統(tǒng)中的計算機視覺技術應用[J];計算機工程與應用;2001年10期
6 張運楚;李貽斌;張建濱;;高斯混合背景模型的方差估計研究[J];計算機工程與應用;2012年04期
7 劉勃,魏銘旭,周荷琴;交通場景中分塊陰影檢測算法研究[J];計算機工程;2005年11期
8 黃英杰;盧湖川;;一種改進的運動目標檢測和陰影消除算法[J];計算機工程;2008年06期
9 盧s
本文編號:1961725
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1961725.html