鋼管混凝土拱橋關(guān)鍵力學(xué)性能分析研究
本文選題:鋼管混凝土拱橋 + 穩(wěn)定性��; 參考:《湖南大學(xué)》2014年碩士論文
【摘要】:自1990年起我國第一座鋼管混凝土拱橋建成后二十余年間,鋼管混凝土拱橋在我國發(fā)展迅速。然而,鋼管混凝土拱橋相關(guān)理論落后于實(shí)踐,我國尚無專門針對(duì)鋼管混凝土拱橋的規(guī)范。本文以廣西省來賓市來華大橋?yàn)楣こ瘫尘�,基于通用有限元軟件ANSYS,主要對(duì)鋼管混凝土拱橋的穩(wěn)定性及徐變展開了分析研究。本文的主要內(nèi)容及結(jié)論如下: (1)對(duì)鋼管混凝土的發(fā)展、特點(diǎn)進(jìn)行了簡要的概述,對(duì)鋼管混凝土拱橋的應(yīng)用趨勢(shì)及設(shè)計(jì)理論進(jìn)行了介紹,并對(duì)鋼管混凝土拱橋的數(shù)值模擬方法及施工階段模擬過程進(jìn)行了詳細(xì)的介紹。采用ANSYS建立了來華大橋全橋模型,并采用MIDAS建立了全橋模型進(jìn)行對(duì)比。 (2)對(duì)橫撐的形式與剛度、橫撐的布置、橋面系剛度等影響穩(wěn)定性的宏觀因素,進(jìn)行了特征值穩(wěn)定分析。分析表明:肋間橫撐的形式與布置、活載的分布對(duì)穩(wěn)定性影響較大。橋面系剛度對(duì)穩(wěn)定性影響較小,在不改變形式前提下橫撐剛度對(duì)穩(wěn)定性影響較小。對(duì)于橫撐,通過合理布置及形式的選取比增加其剛度對(duì)提高穩(wěn)定性更有效。對(duì)影響穩(wěn)定性的微觀因素,如初始缺陷、初應(yīng)力等進(jìn)行了考慮雙重非線性的極限承載力分析。分析表明:初始缺陷對(duì)穩(wěn)定性的影響較大,但是,在實(shí)際工程中拱肋缺陷不能超出規(guī)范要求,而當(dāng)缺陷在規(guī)范允許范圍內(nèi)時(shí),其對(duì)承載力影響不大。初應(yīng)力對(duì)極限承載能力的不利影響較小,可以忽略。 (3)對(duì)來華大橋進(jìn)行了施工階段及成橋十年徐變分析,并將數(shù)值模擬結(jié)果與實(shí)測(cè)數(shù)據(jù)進(jìn)行了對(duì)比。徐變分析采用了換算模量法及蠕變模擬兩種方法。蠕變模擬時(shí),徐變系數(shù)采用04公路橋規(guī)模式。有效模量法徐變分析分別采用了04公路橋規(guī)、CEP-FIP(1990)、CEP-FIP(1978)及歐洲規(guī)范EN1992-2模式。最后,對(duì)徐變對(duì)承載力的影響展開了分析,并對(duì)來華大橋進(jìn)行了考慮施工階段及十年徐變?nèi)^程的極限承載力分析。分析表明:采用不同的徐變模式計(jì)算的施工階段變形結(jié)果較接近,運(yùn)營期間徐變引起了明顯的截面應(yīng)力重分布,不容忽視。初應(yīng)力及徐變的綜合作用對(duì)極限承載力有一定的影響,但影響較小。當(dāng)拱肋存在初始缺陷時(shí),初應(yīng)力及徐變對(duì)承載力的影響略有增大,但對(duì)承載力的影響仍然較小,,徐變對(duì)承載力的影響可以忽略。
[Abstract]:Since 1990, the first concrete-filled steel tubular arch bridge has developed rapidly in China. However, the theory of concrete-filled steel tubular arch bridge lags behind the practice, and there is no specific specification for concrete filled steel tube arch bridge in China. Based on the general finite element software ANSYS, the stability and creep of concrete-filled steel tubular arch bridge are studied in this paper, based on the engineering background of Laibin Bridge in Guangxi Province. The main contents and conclusions of this paper are as follows: 1) the development and characteristics of concrete-filled steel tube (CFST) are briefly summarized, and the application trend and design theory of CFST arch bridge are introduced. The numerical simulation method of concrete-filled steel tube arch bridge and the simulation process of construction stage are introduced in detail. The full-bridge model of the bridge in China is established by ANSYS, and the model of the whole bridge by MIDAS is compared. (2) the characteristic value stability analysis of macroscopical factors such as the form and stiffness of transverse brace, the arrangement of transverse brace and the stiffness of bridge deck system are carried out. The analysis shows that the form and arrangement of intercostal transverse brace and the distribution of live load have great influence on stability. The stiffness of deck system has little effect on the stability, and the lateral bracing stiffness has little effect on the stability without changing the form. For transverse brace, it is more effective to improve stability by reasonable arrangement and form selection than by increasing its stiffness. The double nonlinear ultimate bearing capacity of the microcosmic factors such as initial defects and initial stresses are analyzed. The analysis shows that the initial defect has a great influence on the stability, but the arch rib defect can not exceed the requirements of the code in the actual engineering, but when the defect is within the allowable range of the code, it has little effect on the bearing capacity. The negative effect of initial stress on ultimate bearing capacity is small and can be neglected. 3) the construction stage of the bridge in China and the creep analysis of the bridge for ten years are carried out, and the numerical simulation results are compared with the measured data. Conversion modulus method and creep simulation method are used in creep analysis. Creep simulation, creep coefficient of 04 highway bridge scale. The method of effective modulus creep analysis is based on the CEP-FIPP (1990) and the European Code (EN1992-2) model, respectively. Finally, the influence of creep on bearing capacity is analyzed, and the ultimate bearing capacity of the bridge in China is analyzed considering the construction stage and the whole creep process of ten years. The analysis shows that the results of deformation in construction stage calculated by different creep modes are close and the stress redistribution of section caused by creep during operation can not be ignored. The combined effect of initial stress and creep has a certain effect on the ultimate bearing capacity, but the effect is small. The influence of initial stress and creep on the bearing capacity is slightly increased when the arch rib has initial defects, but the influence on the bearing capacity is still small, and the effect of creep on the bearing capacity can be neglected.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U441;U448.22
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曾德榮;李杰;;基于滑移理論的大跨徑鋼管混凝土拱橋穩(wěn)定性分析[J];重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
2 楊孟剛;曹志光;;初應(yīng)力對(duì)大跨度鋼管混凝土拱橋極限承載力的影響[J];鐵道科學(xué)與工程學(xué)報(bào);2010年04期
3 韋建剛;陳寶春;吳慶雄;;鋼管混凝土拱橋拱軸線施工誤差影響分析[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
4 程曉東,程莉莎,葉貴如;圓鋼管混凝土壓彎長柱非線性屈曲承載力的理論研究[J];工程力學(xué);2004年06期
5 張治成;;大跨度鋼管混凝土拱橋的徐變分析[J];工程力學(xué);2007年05期
6 彭建新;邵旭東;程翔云;黃政宇;;鋼管混凝土拱肋徐變研究[J];工程力學(xué);2007年06期
7 韓冰,杜金生,王元豐;徐變對(duì)鋼管混凝土拱橋的影響分析[J];公路交通科技;2005年06期
8 陳寶春;劉福忠;韋建剛;;327座鋼管混凝土拱橋的統(tǒng)計(jì)分析[J];中外公路;2011年03期
9 陳寶春;楊亞林;;鋼管混凝土拱橋調(diào)查與分析[J];世界橋梁;2006年02期
10 謝肖禮,秦榮,謝開仲;徐變對(duì)鋼管混凝土拱橋拱肋截面應(yīng)力重分布的影響[J];廣西科學(xué);2001年01期
本文編號(hào):1953597
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1953597.html