斜高墩受力性能與主梁撓度的參數(shù)分析研究
發(fā)布時(shí)間:2018-05-29 23:05
本文選題:斜高墩 + 幾何非線性。 參考:《長沙理工大學(xué)》2014年碩士論文
【摘要】:本文以張花高速酉水大橋?yàn)楣こ瘫尘?對施工過程中斜高墩的受力以及斜高墩和箱梁相關(guān)參數(shù)對主梁撓度的影響進(jìn)行了研究,具體的研究工作和成果如下:(1)分別建立酉水大橋主橋整體模型和右幅5#墩的三維實(shí)體模型,研究施工過程中斜高墩的受力;考慮幾何非線性效應(yīng)以及斜交角度變化對橋墩受力性能的影響。研究表明,斜交高墩墩身最大拉、壓應(yīng)力都發(fā)生在墩身兩側(cè)的角點(diǎn)處;斜交墩的內(nèi)力與變形由于考慮了幾何非線性效應(yīng)都有不同程度的增加;在斜交角為50。時(shí),橋墩的受力最不利。(2)以酉水大橋斜交高墩為例,建立右幅5#墩的實(shí)體模型;對斜交高墩做屈曲分析,對比分析橋墩在不考慮幾何非線性效應(yīng)與考慮幾何非線性效應(yīng)以及雙重非線性效應(yīng)這三種情況下,橋墩的臨界荷載所發(fā)生的變化規(guī)律。研究表明,橋墩的一階線性特征值是隨斜交角度的增加而降低的;考慮幾何非線性和雙重非線性效應(yīng)對橋墩的臨界荷載值是降低的;隨著斜交角度的增大,墩頂?shù)呐R界荷載是先降后升的,最小的臨界荷載表示橋墩的承載能力最差(發(fā)生在斜交角度為50。時(shí)),這與(1)中的結(jié)論吻合。(3)文章中介紹了橋梁結(jié)構(gòu)主要設(shè)計(jì)參數(shù)的確定。以酉水大橋主橋?yàn)楣こ瘫尘?運(yùn)用MIDAS軟件建立有限元分析整體模型;分析了箱梁相關(guān)參數(shù)對主梁撓度的影響程度,同時(shí)也分析了斜高墩相關(guān)參數(shù)對主梁撓度的影響程度。研究表明,隨著斜交角的變化,兩邊跨的恒載撓度是隨著斜交角度的增加而增加的,中跨的恒載撓度是隨著斜交角度的增加而減少的。
[Abstract]:In this paper, the influence of the stress of the high piers and the related parameters of the high piers and box beams on the deflection of the main beam in the construction process is studied. The specific research work and results are as follows: (1) the three-dimensional solid model of the main bridge of the main bridge and the right amplitude 5# pier are established respectively, and the construction process is studied. The effect of geometric nonlinear effect and skew angle change on the force performance of piers is considered. The study shows that the maximum pull of the piers and the pressure stress occur at the corner points on both sides of the pier, and the internal force and deformation of the inclined piers increase in varying degrees because of the geometric non linear effect. When the angle is 50., the force of the pier is the most unfavorable. (2) taking the high pier of the uni water bridge as an example, the solid model of the right amplitude 5# pier is set up. The buckling analysis of the skew high pier is made, and the critical loads of the pier are compared and analyzed in three cases where the pier does not consider the geometric nonlinear effect and the geometric nonlinear effect and the double nonlinear effect. The study shows that the first linear eigenvalue of the pier decreases with the increase of the oblique angle, and the critical load value of the pier is reduced by considering the geometric nonlinearity and the double nonlinear effect. With the increase of the oblique angle, the critical load of the pier top is first descended and then rising, and the minimum critical load is the bearing capacity of the pier. The worst is (50. when the angle of oblique intersection is 50.), which coincides with the conclusion in (1). (3) the main design parameters of the bridge structure are introduced in the article. Taking the main bridge of the bridge as the engineering background, the whole model of the finite element analysis is established by using the MIDAS software, and the influence degree of the related parameters of the box girder on the deflection of the main beam is analyzed, and the analysis is also analyzed. The influence of the relative parameters of the high piers on the deflection of the main beam has been studied. The study shows that with the change of the oblique angle, the constant load deflection of the two sides increases with the increase of the oblique angle, and the constant load deflection of the middle span decreases with the increase of the oblique angle.
【學(xué)位授予單位】:長沙理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U441;U448.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 李開言,陳政清,祝志文;連續(xù)剛構(gòu)橋雙肢薄壁高墩風(fēng)荷載研究[J];橋梁建設(shè);2004年03期
,本文編號:1952807
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1952807.html
最近更新
教材專著