天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 交通工程論文 >

低等級公路新型支擋結(jié)構(gòu)物的配筋設(shè)計優(yōu)化

發(fā)布時間:2018-05-16 20:50

  本文選題:加筋格賓擋土墻 + 設(shè)計方法; 參考:《重慶交通大學(xué)》2014年碩士論文


【摘要】:加筋格賓擋土墻自于其自身的優(yōu)點,正被各行業(yè)所接受和推廣,在低等級公路方面則需要降低該新型支擋結(jié)構(gòu)的造價以推廣其使用。對擋墻的配筋設(shè)計優(yōu)化是降低造價的一重要手段,不但能降低擋墻造價,而且能加深對擋墻工作原理、性能的掌握。在實際工程上,加筋格賓擋墻的配筋優(yōu)化一般都是在極限平衡原理的基礎(chǔ)上,采用均勻間距、等長、同剛度筋材的布設(shè)方式,這樣的優(yōu)化方法沒有很好的考慮在不同加筋模式下土體與筋材相互作用的特點。通過考慮土體與筋材相互作用下產(chǎn)生的協(xié)調(diào)變形、受力和位移等情況能很好的貼近工程實際,因此本文通過有限元數(shù)值分析方法來研究加筋格賓擋墻在各種不同加筋模式下所展現(xiàn)的側(cè)向位移規(guī)律和筋材受力的規(guī)律,從而為擋墻設(shè)計提供配筋優(yōu)化指導(dǎo),這對加筋格賓擋土墻在低等級公路的推廣應(yīng)用有很大的促進作用,具有十分重要意義。 本文通過有限元軟件Plaxis建立大尺寸擋墻模型來進行研究分析,分析了加筋格賓擋土墻內(nèi)部受力和位移特點。通過建立不同種類的加筋模式和不同面板形式的擋墻模型進行分組研究,重點分析研究了擋墻的側(cè)向位移和筋材受荷所存在的規(guī)律。主要研究成果有:1、在擋墻的側(cè)向位移方面,土體內(nèi)摩擦角變化所帶來的影響最大,略大于土體的彈性模量,而內(nèi)聚力的影響最小,在擋墻穩(wěn)定性方面,內(nèi)摩擦角的影響最大,遠大于影響其次的內(nèi)聚力和最小的彈性模量;2、加筋量相同的情況下,交替加筋比分組加筋更能有效的控制側(cè)向位移,剛度交替加筋的側(cè)向位移形狀與均勻加筋一樣,只是量稍微有些增加,進一步縮短小剛度筋材的長度可以很好的減少加筋量,且對擋墻的側(cè)向位移影響很。3、三種及三種以上不同剛度筋材混合加筋時,將剛度大的筋材布設(shè)在擋墻側(cè)向位移最大的區(qū)域能有效的控制擋墻變形;4、各種加筋模式下直立式面板擋墻側(cè)向位移最大,,其次是傾斜式與直立式相結(jié)合的擋墻,最小的是傾斜式面板擋墻;5、加筋間距不變、降低部分筋材剛度要比筋材剛度不變或增大、增大加筋間距的方案更加有效控制側(cè)向變形;6、相同剛度筋材均勻加筋的話,筋材拉力大小和分布不受筋材剛度大小的影響,但筋材拉力會隨著加筋間距的增加而增大,且面板形式對筋材荷載的大小和分布情況影響很大;7、交替加筋采用剛度相差較大的筋材時,剛度大的筋材作為主筋材將承擔(dān)更多的土體側(cè)壓力,主加筋層的間距會影響擋墻的側(cè)向位移和筋材的最大拉力值,進而還會影響擋墻的局部變形;8、長度和剛度同時交替加筋時,剛度交替帶來的影響比長度交替更加顯著,大剛度筋材所承擔(dān)的拉力比小剛度筋材大,大剛度筋材起著主加筋層的作用。
[Abstract]:Reinforced Gobin retaining wall is being accepted and popularized by various industries because of its own advantages. In the aspect of low-grade highway, the cost of the new retaining structure should be reduced in order to popularize its use. The optimization of reinforcement design is an important means to reduce the cost of retaining wall. It can not only reduce the cost of retaining wall, but also deepen the grasp of the working principle and performance of retaining wall. In practical engineering, the reinforcement optimization of reinforced Gobin retaining wall is usually based on the principle of limit equilibrium, the uniform spacing, equal length, and the same stiffness of reinforcement are adopted. This optimization method does not take into account the interaction between soil and reinforcement in different reinforcement modes. By considering the coordinated deformation, force and displacement caused by the interaction between soil and steel, it can be very close to the engineering practice. In this paper, finite element numerical analysis method is used to study the lateral displacement law and the stress law of reinforced material in different reinforcement modes, so as to provide optimization guidance for the design of retaining wall. This will promote the application of reinforced Gobin retaining wall in low-grade highway greatly and has very important significance. In this paper, the finite element software Plaxis is used to build a large size retaining wall model to study and analyze the internal force and displacement characteristics of reinforced Gebin retaining wall. By establishing different types of reinforced model and different panel type of retaining wall model, the paper analyzes and studies the law of lateral displacement of retaining wall and the law of stiffened material subjected to load. The main research results are as follows: in the aspect of lateral displacement of retaining wall, the variation of internal friction angle of soil is the biggest, slightly larger than the elastic modulus of soil, while cohesion is the least, and the influence of angle of internal friction is the most in the aspect of stability of retaining wall. In the case of the same amount of reinforcement, the lateral displacement can be controlled more effectively by alternating reinforcement than by grouping reinforcement, and the shape of lateral displacement of alternating reinforcement is the same as that of uniform reinforcement. But the quantity is slightly increased, further shortening the length of small stiffness bars can reduce the reinforcement amount very well, and the influence on lateral displacement of retaining wall is very small, when three or more kinds of stiffened steel bars with different stiffness are mixed, The deformation of retaining wall can be effectively controlled by placing stiffened steel bars in the area with the largest lateral displacement of the retaining wall, and the lateral displacement of the vertical slab retaining wall is the largest under various reinforced modes, and the second is the retaining wall with the combination of the inclined type and the vertical type. The smallest one is inclined panel retaining wall (5), the spacing of reinforcement is invariable, the stiffness of some reinforcement is reduced or increased than the stiffness of reinforcement, and the scheme of increasing reinforcement spacing is more effective in controlling lateral deformation (6%). If the reinforcement is uniformly reinforced with the same stiffness, The tensile force and distribution of the steel bar are not affected by the stiffness of the steel bar, but the tensile force of the steel bar increases with the increase of the reinforcement spacing. The form of slabs has a great influence on the load and distribution of steel bars. When the stiffeners with different stiffness are used alternately, the stiffeners with large stiffness will bear more lateral pressure of soil. The spacing of the main stiffened layer will affect the lateral displacement of the retaining wall and the maximum tensile force of the steel bar, and then affect the local deformation of the retaining wall. When the length and stiffness of the retaining wall are alternately stiffened at the same time, the influence of the alternate stiffness is more significant than that of the alternating length. The tensile force of the steel bar with large stiffness is larger than that of the steel bar with small stiffness, and the steel bar with large stiffness acts as the main reinforcement layer.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U417.1

【參考文獻】

相關(guān)期刊論文 前10條

1 羅書學(xué),陳祿生,吳西良;動力作用下加筋土擋墻的試驗研究和有限元分析[J];四川建筑科學(xué)研究;1995年02期

2 王家鼎;謝婉麗;駱鳳濤;;高填方加筋黃土路堤穩(wěn)定性的有限元分析[J];地理科學(xué);2007年02期

3 介玉新,李廣信,鄭繼勤;纖維加筋土計算的新方法[J];工程力學(xué);1999年03期

4 譚波;楊和平;羅奕;;土工格柵柔性支護在處治膨脹土路塹滑坡中的應(yīng)用[J];桂林工學(xué)院學(xué)報;2006年02期

5 林廣平,葛折圣;剛性面板加筋擋土墻的離心模型試驗研究[J];公路交通科技;2005年11期

6 張興強,鄧衛(wèi)東,陳文金,閆澍旺;動載作用下土工格柵加筋土計算模型的研究[J];水利學(xué)報;2001年07期

7 張孟喜,孫鈞;土工合成材料加筋土應(yīng)變軟化特性及彈塑性分析[J];土木工程學(xué)報;2000年03期

8 楊果林,李海深,王永和;加筋土擋墻動力特性模型試驗與動力分析[J];土木工程學(xué)報;2003年06期

9 高江平,石兆旭,俞茂宏;網(wǎng)狀與條帶式加筋土擋墻墻面位移的測試[J];長安大學(xué)學(xué)報(自然科學(xué)版);2005年02期

10 高江平;俞茂宏;胡長順;陳忠達;;加筋土擋墻滑動破裂面的大型模型試驗[J];長安大學(xué)學(xué)報(自然科學(xué)版);2005年06期



本文編號:1898349

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1898349.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶36f72***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com