自錨式懸索橋主纜線形及吊索張拉方案研究
本文選題:自錨式懸索橋 + 主纜線形; 參考:《重慶交通大學(xué)》2014年碩士論文
【摘要】:自錨式懸索橋是在地錨式懸索橋的基礎(chǔ)上發(fā)展而來(lái)的,它省去了地錨式懸索橋巨大的錨錠,直接將主纜錨固在加勁梁上,考慮到結(jié)構(gòu)受力以及施工等的因素,自錨式懸索橋的跨徑一般不大,但是由于其橋型布置的靈活性以及獨(dú)特的外形,近些年成為了城市橋梁中一種具有較強(qiáng)競(jìng)爭(zhēng)力的橋型。 雖然自錨式懸索橋的研究早在19世紀(jì)就已經(jīng)開始,但是我國(guó)直到21世紀(jì)才開始修建,且大多數(shù)為三跨自錨式懸索橋,獨(dú)塔自錨式懸索橋的建造則相對(duì)較少。本文結(jié)合北京潮白河非對(duì)稱獨(dú)塔自錨式懸索橋,對(duì)自錨式懸索橋的主纜線形以及吊索張拉進(jìn)行了如下幾個(gè)方面的探討和分析: ①對(duì)自錨式懸索橋主纜線形的求解方法進(jìn)行歸納總結(jié),推導(dǎo)了拋物線和懸鏈線主纜的線形求解公式,同時(shí)結(jié)合笛卡爾坐標(biāo)系,推導(dǎo)了基于拉格朗日坐標(biāo)系求解自錨式懸索橋主纜線形的公式,并根據(jù)推導(dǎo)的公式編寫了能夠求解自錨式懸索橋成橋線形以及施工過(guò)程中主纜線形的圖形交互程序。 ②由一個(gè)兩端等高的簡(jiǎn)支(固結(jié))索,,通過(guò)對(duì)比分析均布荷載作用下考慮抗彎剛度索的線形解析式與柔性索的線形解析式兩者之間的差異得出,考慮抗彎剛度索的線形解析表達(dá)式比柔性索多出了一個(gè)與線形影響系數(shù)()有關(guān)的多項(xiàng)式。通過(guò)分析線形影響系數(shù)分別趨于0以及無(wú)窮得出,當(dāng)趨于無(wú)窮時(shí),具有剛度的索退化為柔性索,當(dāng)趨于0時(shí),主纜表現(xiàn)為梁的變形特性。 ③以北京潮白河非對(duì)稱獨(dú)塔自錨式懸索橋?yàn)槔,分別用梁?jiǎn)卧ǹ紤]主纜抗彎剛度)、索單元(不計(jì)主纜抗彎剛度)來(lái)模擬自錨式懸索橋的主纜,通過(guò)有限元模型計(jì)算發(fā)現(xiàn),隨著吊索張拉的進(jìn)行,兩個(gè)主纜之間的豎向位移差在減小,(由2的分析知主纜水平分力的增加使得主纜抗彎剛度特性退化)且索梁的位移差異主要表現(xiàn)在未張拉吊索處,成橋后位移差異可以忽略。 ④首先通過(guò)對(duì)獨(dú)塔自錨式懸索橋三種吊索張拉方案的分析對(duì)比得出,獨(dú)塔自錨式懸索橋適合對(duì)稱張拉,且以無(wú)應(yīng)力索長(zhǎng)和張拉力共同控制吊索張拉能確保安全并提高效率,然后探討了一種以無(wú)應(yīng)力索長(zhǎng)作為控制因素一次張拉吊索的方法,該方法可行但會(huì)略微犧牲吊索安全系數(shù),最后討論了基于影響矩陣調(diào)整成橋索力的方法。
[Abstract]:The self anchored suspension bridge is developed on the basis of the ground anchored suspension bridge. It saves the huge anchor ingot of the anchorage suspension bridge, anchors the main cable directly on the stiffening beam. Considering the factors such as structural force and construction, the span of the self anchored suspension bridge is not very large, but because of the flexibility and unique shape of the bridge layout In recent years, it has become a strong competitive bridge type in urban bridges.
Although the study of the self anchored suspension bridge has begun in nineteenth Century, it has not been built until twenty-first Century, and most of them are three span self anchored suspension bridges, and the single tower self anchored suspension bridge is relatively small. This paper combines the unsymmetrical single tower self anchored suspension bridge of the Beijing Chao Bai River to the line shape of the main cable of the self anchored suspension bridge and the main cable shape of the self anchored suspension bridge. The sling tension is discussed and analyzed in the following aspects.
Firstly, the method of solving the line shape of the main cable of the self anchored suspension bridge is summarized, and the linear formula of the main cable of the parabola and catenary is derived. At the same time, combining the Descartes coordinate system, the formula for solving the line shape of the main cable of the self anchored suspension bridge is derived based on the Lagrange coordinate system, and the derivation of the derived formula can be used to solve the self anchored suspension. The Graphic Interaction Program of the cable bridge alignment and the main cable alignment during the construction process.
By comparing and analyzing the difference between the linear analytic formula of the flexural stiffness cable and the linear analytic formula of the flexible cable, the linear analytic expression of the flexural rigidity cable is obtained by comparing and analyzing the difference between the linear analytic formula of the flexural rigidity cable and the linear analytic formula of the flexible cable. The influence coefficient of the over analysis line shape tends to 0 and infinite, and when it tends to infinity, the cable with stiffness degenerates into flexible cable. When it tends to 0, the main cable is shown to be the deformation characteristic of the beam.
(3) taking the unsymmetrical single tower self anchored suspension bridge of the Beijing Chao Bai River as an example, the main cable of the self anchored suspension bridge is simulated with the beam element (considering the flexural rigidity of the main cable) and the cable unit (not counting the bending stiffness of the main cable). Through the finite element model calculation, it is found that the vertical displacement difference between the two main cables decreases with the lifting of the sling, (2 points). It is known that the increase of the horizontal force of the main cable makes the bending stiffness characteristic of the main cable degenerate and the difference of the displacement of the cable beam is mainly shown at the unstretched sling, and the difference of the displacement after the bridge can be ignored.
Firstly, through the analysis and comparison of the three suspending cable tensioning schemes for the single tower self anchored suspension bridge, the single tower self anchored suspension bridge is suitable for symmetric tension, and the safety and efficiency can be ensured by the joint control of the sling without stress cable length and tension force. Then a kind of one tension sling with no stress cable length as a control factor is discussed. The method is feasible, but slightly sacrifices the safety factor of the sling. Finally, the method of adjusting the cable force based on the influence matrix is discussed.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U448.25
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曲婷;王煥定;曾森;陳少峰;;考慮主纜彎曲剛度后對(duì)懸索橋的影響[J];低溫建筑技術(shù);2009年07期
2 陳常松;陳政清;顏東煌;;懸索橋主纜初始位形的懸鏈線方程精細(xì)迭代分析法[J];工程力學(xué);2006年08期
3 劉釗;劉厚軍;;懸索橋主纜變形及重力剛度新算法[J];工程力學(xué);2009年06期
4 張俊平;黃海云;劉愛榮;梅力彪;李永河;;自錨式懸索橋體系轉(zhuǎn)換過(guò)程非線性行為與施工控制方法的試驗(yàn)研究[J];工程力學(xué);2009年S2期
5 李建慧;李愛群;袁輝輝;李喜平;;獨(dú)柱塔空間纜索自錨式懸索橋纜索線形計(jì)算方法[J];公路交通科技;2009年10期
6 程儉廷;張俊平;張力文;;獵德大橋吊索張拉施工方案分析與優(yōu)化[J];中外公路;2011年06期
7 謝尚英;任清順;鄭愛華;;廣州獵德大橋曲面索塔設(shè)計(jì)[J];橋梁建設(shè);2008年03期
8 黃建華;懸索橋施工控制的基本框架[J];鐵道建筑技術(shù);2000年02期
9 唐茂林,強(qiáng)士中,沈銳利;懸索橋成橋主纜線形計(jì)算的分段懸鏈線法[J];鐵道學(xué)報(bào);2003年01期
10 肖汝誠(chéng),項(xiàng)海帆;斜拉橋索力優(yōu)化的影響矩陣法[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);1998年03期
本文編號(hào):1842022
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1842022.html