特大體量公鐵兩用矮塔斜拉橋箱—桁組合結(jié)構(gòu)的研究
本文選題:公鐵兩用 + 矮塔斜拉橋 ; 參考:《中南大學(xué)》2014年碩士論文
【摘要】:摘要:擬建的WHS橋是一座(98+238+588+224+84)m的公鐵兩用雙主桁雙索面矮塔斜拉橋。該橋分兩層,上層為8車道公路,下層為4線鐵路,它將是當(dāng)前國(guó)內(nèi)外跨度和體量都最大的公鐵兩用矮塔斜拉橋。為提高橋梁剛度,上層橋面采用正交異性板開口鋼箱梁;下層橋面采用正交異性板閉口鋼箱梁;主桁桿件與上、下層鋼箱梁結(jié)合成整體形成箱-桁組合結(jié)構(gòu)。這種結(jié)構(gòu)形式國(guó)內(nèi)外未有先例,結(jié)構(gòu)構(gòu)造和受力情況都很復(fù)雜。本文對(duì)該橋的結(jié)構(gòu)形式、變形和受力特征、主梁施工工法進(jìn)行了研究,主要工作和成果如下: 1.對(duì)WHS橋有限元模擬方法進(jìn)行了研究,選用空間桿系結(jié)構(gòu)法建立全橋有限元模型,對(duì)上層公路正交異性板開口鋼箱梁采用單層梁格法模擬,對(duì)下層鐵路正交異性板封閉鋼箱梁采用雙層梁格法模擬。 2.研究了WHS橋在活載作用下的變形和受力性能,結(jié)果表明:由于采用了箱-桁組合結(jié)構(gòu),該橋在鐵路和公路靜活載共同作用下最大豎向位移為985mm,撓跨比1/597。 3.研究了鐵路箱梁底板、上弦箱剛度、主桁剛度、斜拉索剛度、橋塔剛度、斜拉索錨固于上弦和下弦等因素對(duì)活載作用下WHS橋變形和受力的影響。結(jié)果表明:鐵路鋼箱梁對(duì)橋梁剛度有較大貢獻(xiàn),鋼箱梁底板不可或缺;上弦箱、主桁、斜拉索和橋塔等的剛度對(duì)橋梁的變形和受力也有明顯的影響;斜拉索錨于上弦時(shí)橋梁的變形和受力狀態(tài)優(yōu)于錨于下弦。 4.對(duì)該橋提出了三種主梁施工工法并研究了與之相關(guān)的橋梁在恒載作用下的變形和受力,對(duì)三種工法作了綜合比較。結(jié)果表明:一次成橋的工法穩(wěn)定性較好,施工過程較易控制;兩種二次成橋的工法均需嚴(yán)格控制拼裝順序并及時(shí)調(diào)整索力;三種工法在恒載、恒載與活載共同作用下塔柱塔頂外側(cè)均出現(xiàn)拉應(yīng)力。 5.對(duì)WHS橋的結(jié)構(gòu)合理性作出了評(píng)價(jià)并提出了優(yōu)化和細(xì)化的建議。該橋結(jié)構(gòu)形式和構(gòu)造總體合理,整體剛度和受力總體滿足要求;塔柱塔頂應(yīng)采取措施局部加強(qiáng)、或考慮將其上橫梁去掉或下移至錨索以下。 本文的研究成果為WHS橋的設(shè)計(jì)提供了依據(jù),對(duì)其他類似橋梁也有參考價(jià)值。圖74幅,表33個(gè),參考文獻(xiàn)60篇。
[Abstract]:Abstract: the proposed WHS bridge is a (98+238+588+224+84) m double main truss double cable plane short tower cable-stayed bridge with double main truss. The bridge is divided into two layers, the upper layer is 8 lane highway, and the lower layer is 4 line railway. It will be the current domestic and foreign long span and the largest steel double use short tower cable-stayed bridge. In order to improve the bridge stiffness, the upper deck adopts orthotropic plate opening. The steel box girder of the mouth is a steel box girder with orthotropic plate closed; the main truss member and the upper and lower steel box girder are formed to form a box truss composite structure. This structure is not precedent at home and abroad. The structure and structure and the stress condition are very complex. This paper is on the structure, deformation and stress characteristics of the bridge, and the construction method of the main beam. The main work and results are as follows:
1. the finite element simulation method of WHS bridge is studied. A full bridge finite element model is established by using the spatial bar system structure method. A single beam grid method is used to simulate the orthotropic slab open steel box girder on the upper highway, and the double beam grid method is used to simulate the bottom rail orthotropic plate closed steel box girder.
2. the deformation and stress performance of the WHS bridge under the active load are studied. The results show that the maximum vertical displacement of the bridge is 985mm under the combined action of the static and live loads of the railway and the highway, and the deflection span ratio is 1/597..
3. the influence of the stiffness of the upper chord box, the rigidity of the upper chord box, the stiffness of the main truss, the stiffness of the cable-stayed cable, the stiffness of the bridge tower, the anchorage of the cable-stayed cable to the upper and lower chords on the deformation and stress of the WHS bridge under the live load. The results show that the steel box girder has a great contribution to the stiffness of the bridge, and the steel box girder floor is indispensable; the upper chord box, main truss, inclined cable and the cable are necessary. The stiffness of bridge tower also has a significant effect on the deformation and stress of the bridge; when the cable is anchored to the upper chord, the deformation and stress state of the bridge is better than that of the anchor string.
4. the construction method of three main beams was put forward and the deformation and stress of the bridge related to the bridge were studied under the constant load. The three methods were compared synthetically. The results showed that the construction method of the first bridge was more stable and the construction process was easier to control; two kinds of two construction methods needed to strictly control the sequence of assembly and adjust it in time. Cable tension; the three methods are tensile stress at the top of the tower column under the combined action of dead load, dead load and live load.
5. the structure rationality of the WHS bridge is evaluated and the suggestion of optimization and refinement is proposed. The structure and structure of the bridge are generally reasonable, the overall stiffness and the force are generally satisfied; the top of the tower tower should be partially strengthened, or the above beam should be removed or moved down to the anchor cable.
The research results in this paper provide a basis for the design of WHS bridge, and have reference value for other similar bridges. There are 74 tables, 33 tables and 60 references.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U448.27
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳彥;肖玉德;張卉;;合肥市銅陵路橋景觀設(shè)計(jì)研究[J];工程與建設(shè);2007年06期
2 羅如登;葉梅新;;高速鐵路鋼桁梁橋正交異性整體鋼橋面板有效寬度的計(jì)算原則[J];鋼結(jié)構(gòu);2009年05期
3 王勝;惠青黃河公路大橋主橋結(jié)構(gòu)分析[J];公路;2005年01期
4 彭衛(wèi)國(guó);崔鐵萬;朱孟君;;荷麻溪大橋部分斜拉橋設(shè)計(jì)[J];公路;2007年05期
5 孫向東;;江肇高速西江大橋?qū)挿沽喊崩瓨蛟O(shè)計(jì)[J];公路;2010年05期
6 何新平;矮塔斜拉橋的設(shè)計(jì)[J];公路交通科技;2004年04期
7 嚴(yán)國(guó)敏;試談“部分斜拉橋”——日本屋代南橋、屋代北橋、小田原港橋[J];國(guó)外橋梁;1996年01期
8 劉嵐,嚴(yán)國(guó)敏;3跨連續(xù)部分斜拉PC箱梁橋——蟹澤大橋[J];國(guó)外橋梁;1996年02期
9 嚴(yán)國(guó)敏;日本木曾川橋──主跨275m的4塔混合梁部分斜拉橋[J];國(guó)外橋梁;1997年02期
10 陳開利,劉海燕;木曾川橋、揖斐川橋PC梁與鋼梁連接部位的設(shè)計(jì)和施工[J];世界橋梁;2005年02期
,本文編號(hào):1831062
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1831062.html