預(yù)應(yīng)力CFRP板加固梁橋的效果監(jiān)測與研究
本文選題:預(yù)應(yīng)力CFRP板 + 長標(biāo)距FBG。 參考:《東南大學(xué)》2016年碩士論文
【摘要】:預(yù)應(yīng)力CFRP(Carbon Fiber Reinforced Polymer Plate)板快速加固橋梁技術(shù)是近年來發(fā)展的橋梁結(jié)構(gòu)新型加固技術(shù),然而目前尚缺乏預(yù)應(yīng)力CFRP預(yù)應(yīng)力損失的有效監(jiān)測和評價(jià)方法。針對該現(xiàn)狀,本文首次采用長標(biāo)距光纖光柵(FBG)傳感技術(shù)監(jiān)測預(yù)應(yīng)力損失,通過系列試驗(yàn)和有限元分析綜合研究了預(yù)應(yīng)力CFRP板加固混凝土結(jié)構(gòu)的力學(xué)性能及其預(yù)應(yīng)力損失特征,提出了相應(yīng)的預(yù)應(yīng)力損失監(jiān)測和評價(jià)方法。最后,以汾灌高速新沭河大橋預(yù)應(yīng)力CFRP板加固工程為背景,通過長期預(yù)應(yīng)力損失監(jiān)測和有限元軟件建模驗(yàn)證了基于長標(biāo)距FBG傳感的預(yù)應(yīng)力損失監(jiān)測和評價(jià)方法的有效性。主要研究內(nèi)容及結(jié)論如下:(1)通過對體外預(yù)應(yīng)力CFRP板加固混凝土梁的CFRP預(yù)應(yīng)力損失以及施工過程與使用過程中混凝土受拉與受壓區(qū)應(yīng)力進(jìn)行理論分析,分析了預(yù)應(yīng)力損失的幾方面主要原因,并推導(dǎo)了相應(yīng)的預(yù)應(yīng)力損失公式。同時(shí),推導(dǎo)了在加固施工過程中和加固后正常使用中的混凝土最大拉壓應(yīng)力計(jì)算公式。(2)本文開展試驗(yàn)梁實(shí)驗(yàn)研究預(yù)應(yīng)力CFRP加固技術(shù)。采用用分布式長標(biāo)距FBG傳感技術(shù)實(shí)時(shí)監(jiān)測了預(yù)應(yīng)力CFRP板加固實(shí)驗(yàn)梁張拉過程及完成后的CFRP板、混凝土以及鋼筋的應(yīng)變變化狀況,50天預(yù)應(yīng)力損失趨于穩(wěn)定并小于5%,表明CFRP板可與混凝土梁共同工作,滿足預(yù)期要求;同時(shí),開展了四點(diǎn)彎靜載和疲勞試驗(yàn),結(jié)果表明:預(yù)應(yīng)力CFRP板具有良好的加固效果,混凝土的初始開裂荷載和承載力分別提高60%和30%以上,錨固系統(tǒng)具有良好的抗疲勞性能。建立ANSYS模型對試驗(yàn)梁進(jìn)行分析,張拉過程中各部分應(yīng)變變化與試驗(yàn)梁實(shí)測數(shù)據(jù)基本一致,表明試驗(yàn)梁張拉過程滿足加固要求。試驗(yàn)梁分別使用力卡錨固系統(tǒng)和剛性自鎖式錨固系統(tǒng)兩種系統(tǒng),對CFRP板施加預(yù)應(yīng)力進(jìn)行平行對比研究,得出力卡錨固系統(tǒng)張拉完成后達(dá)到了更好的加固效果。(3)采用長標(biāo)距FBG傳感器對新沭河橋預(yù)應(yīng)力CFRP板加固工程進(jìn)行監(jiān)測,研究了加固中CFRP板及混凝土的應(yīng)變變化,以及預(yù)應(yīng)力CFRP板長期應(yīng)變損失。結(jié)果表明,加固后箱梁跨中混凝土壓應(yīng)力增量為0.42MPa左右,在有限元計(jì)算值0.25~0.60MPa范圍內(nèi);張拉后CFRP板應(yīng)變約為7500με,預(yù)應(yīng)力短期損失約為張拉控制應(yīng)力的3%,滿足加固設(shè)計(jì)要求;通過對預(yù)應(yīng)力CFRP板長期預(yù)應(yīng)力監(jiān)測,預(yù)應(yīng)力CFRP板的長期預(yù)應(yīng)力損失率約為5%;且隨時(shí)間推移,預(yù)應(yīng)力損失率逐漸減少,3個(gè)月后基本不再變化。綜上表明,預(yù)應(yīng)力CFRP板加固技術(shù)運(yùn)用于實(shí)橋工程具有較好的加固效果。
[Abstract]:Prestressed CFRP (Carbon Fiber Reinforced Polymer Plate) plate rapid reinforcement of bridge technology is a new bridge reinforcement technology developed in recent years. However, there is still a lack of effective monitoring and evaluation method for the loss of prestressed CFRP prestress at present. For the first time, this paper uses long standard distance fiber grating (FBG) sensing technology to monitor prestress for the first time. Loss, through a series of experiments and finite element analysis, the mechanical properties of prestressed CFRP reinforced concrete structure and the characteristics of prestress loss are synthetically studied, and the corresponding monitoring and evaluation methods of prestress loss are put forward. Finally, the long-term prestress loss supervision is carried out in the background of the prestressed CFRP plate consolidation project of the Fenshui high speed Shishu River Bridge. The measurement and finite element software modeling verifies the effectiveness of the prestress loss monitoring and evaluation method based on long standard distance FBG sensing. The main contents and conclusions are as follows: (1) the stress loss of concrete beams strengthened by external prestressing CFRP plate and the stress in the tension and compression zone of concrete during the construction process and the application process are carried out. In theory analysis, the main reasons of prestress loss are analyzed, and the corresponding formula of prestress loss is derived. At the same time, the formula for calculating the maximum tensile stress of concrete in normal use of reinforcement construction and after reinforcement is derived. (2) in this paper, experimental beam experiment is carried out to study prestressed CFRP reinforcement technology. The standard distance FBG sensing technology is used to monitor the tension process of the prestressed CFRP plate reinforced experimental beam and the strain changes of the CFRP board, concrete and the steel bar after completion. The 50 day prestress loss tends to be stable and less than 5%. It shows that the CFRP board can work with the concrete beam to meet the expected requirements. At the same time, the static load and fatigue test of four points have been carried out. The results show that the prestressed CFRP plate has good reinforcement effect, the initial cracking load and the bearing capacity of the concrete are increased by 60% and 30% respectively. The anchorage system has good fatigue resistance. The ANSYS model is established to analyze the test beam. The changes of each part in the tensioning process are basically consistent with the experimental data of the test beams. The tensile process of the test beam meets the requirements of reinforcement. The test beams are used two systems of the force card anchorage system and the rigid self locking anchorage system respectively, and the CFRP board is prestressing in parallel. After the tension card anchorage system has been completed, the strengthening effect has been achieved. (3) the long standard distance FBG sensor is used for the prestressed CFR of the new Shuhe River Bridge. The P plate reinforcement project is monitored, and the strain changes of the CFRP plate and concrete in the reinforcement and the long-term strain loss of the prestressed CFRP board are studied. The results show that the increment of the compressive stress of the concrete in the span of the box girder is about 0.42MPa, and the calculation value is 0.25 to 0.60MPa in the finite element. The strain of the CFRP plate after tension is about 7500 um, and the prestress is short term. The loss is about 3% of the tension control stress, which meets the requirements of the reinforcement design. By monitoring the long-term prestress of the prestressed CFRP plate, the long-term prestress loss rate of the prestressing CFRP plate is about 5%, and the loss rate of the prestress decreases gradually with time, and is basically no longer changed after 3 months. It is shown that the prestressed CFRP plate reinforcement technology is applied to the real bridge. The project has good reinforcement effect.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:U445.72
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王偉民;;淺談橋梁預(yù)應(yīng)力加固技術(shù)[J];價(jià)值工程;2012年35期
2 葉國文;;預(yù)應(yīng)力加固技術(shù)在橋梁施工中的應(yīng)用[J];江西建材;2013年03期
3 李瑞敏;倪衛(wèi)紅;;預(yù)應(yīng)力加固技術(shù)在公路橋梁工程施工中的施工工藝[J];江西建材;2014年18期
4 馬林;鐵路混凝土梁橫向預(yù)應(yīng)力加固[J];鐵道建筑;2000年09期
5 姜朔;;路橋預(yù)應(yīng)力加固技術(shù)探析[J];科技資訊;2008年13期
6 鄧?yán)誓?張鵬;燕柳斌;陳華;韋永樂;;預(yù)應(yīng)力碳纖維板加固鋼筋混凝土梁施工工藝及試驗(yàn)研究[J];混凝土;2009年08期
7 岳晉霞;;預(yù)應(yīng)力加固技術(shù)在路橋施工中的應(yīng)用[J];山西建筑;2013年26期
8 馬孝軍;;預(yù)應(yīng)力加固技術(shù)在公路橋梁工程中的應(yīng)用[J];黑龍江交通科技;2014年03期
9 王李果,陸洲導(dǎo),李剛;預(yù)應(yīng)力框架火災(zāi)后的加固試驗(yàn)[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年07期
10 劉國義;王守國;陳艷和;李剛;紀(jì)常杰;;外部預(yù)應(yīng)力碳化纖維復(fù)合纜繩在混凝土梁加固中的應(yīng)用[J];國外油田工程;2005年11期
相關(guān)會議論文 前10條
1 南建林;石瀟巖;王陳遠(yuǎn);王凱;蔡偉國;;上海汽車工業(yè)大廈配套工程綜合樓預(yù)應(yīng)力改造設(shè)計(jì)及施工[A];第八屆后張預(yù)應(yīng)力學(xué)術(shù)交流會論文集[C];2004年
2 姚國文;晏富洋;吳海軍;;桁式組合拱橋預(yù)應(yīng)力加固效果分析[A];第22屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集第Ⅰ冊[C];2013年
3 祝介旺;柏松;張路青;楊志法;伍法權(quán);;預(yù)應(yīng)力錨梁的設(shè)計(jì)研究[A];中國地質(zhì)學(xué)會工程地質(zhì)專業(yè)委員會2007年學(xué)術(shù)年會暨“生態(tài)環(huán)境脆弱區(qū)工程地質(zhì)”學(xué)術(shù)論壇論文集[C];2007年
4 吳海軍;黃友幫;;桁式組合拱橋預(yù)應(yīng)力加固技術(shù)分析[A];第20屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第Ⅱ冊)[C];2011年
5 馬亮;梁力;張樹仁;;外加預(yù)應(yīng)力加固技術(shù)在橋梁工程中的應(yīng)用[A];第16屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第Ⅲ冊)[C];2007年
6 張愷;張連普;羅保恒;鄧宗才;張建偉;;預(yù)應(yīng)力芳綸纖維布在橋梁加固中的應(yīng)用[A];第十二屆全國纖維混凝土學(xué)術(shù)會議論文集[C];2008年
7 劉麗娜;丁亞紅;段敬民;曾憲桃;;預(yù)應(yīng)力FRP材料的研究現(xiàn)狀及其在土木工程中的應(yīng)用[A];第五屆全國FRP學(xué)術(shù)交流會論文集[C];2007年
8 李延和;李樹林;吳元;;高效預(yù)應(yīng)力加固技術(shù)發(fā)展綜述[A];首屆全國既有結(jié)構(gòu)加固改造設(shè)計(jì)與施工技術(shù)交流會論文集[C];2007年
9 項(xiàng)劍鋒;;高效預(yù)應(yīng)力加固和改造技術(shù)的工程應(yīng)用[A];首屆全國既有結(jié)構(gòu)加固改造設(shè)計(jì)與施工技術(shù)交流會論文集[C];2007年
10 卓靜;李唐寧;邢世建;周密;;體外錨固FRP帶預(yù)應(yīng)力加固新方法的原理[A];第十七屆全國橋梁學(xué)術(shù)會議論文集(下冊)[C];2006年
相關(guān)博士學(xué)位論文 前3條
1 李春良;預(yù)應(yīng)力CFRP加固鋼筋砼梁復(fù)合結(jié)構(gòu)力學(xué)行為分析[D];吉林大學(xué);2008年
2 田安國;預(yù)應(yīng)力FRP加固混凝土受彎構(gòu)件試驗(yàn)及設(shè)計(jì)理論研究[D];東南大學(xué);2006年
3 葉華文;預(yù)應(yīng)力碳纖維板(CFRP)加固鋼板受拉靜力及疲勞性能試驗(yàn)研究[D];西南交通大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 盧毅;玄武巖纖維布加固鋼管預(yù)應(yīng)力試驗(yàn)研究與機(jī)理分析[D];西南科技大學(xué);2015年
2 王俊;大尺度有損RC梁的預(yù)應(yīng)力碳板加固研究[D];大連理工大學(xué);2015年
3 梁爽;有黏結(jié)預(yù)應(yīng)力加固體系在預(yù)應(yīng)力混凝土連續(xù)箱梁橋中的應(yīng)用研究[D];重慶交通大學(xué);2015年
4 胡海濤;預(yù)應(yīng)力碳纖維加固混凝土的施工技術(shù)研究[D];沈陽工業(yè)大學(xué);2016年
5 李昌昊;預(yù)應(yīng)力CFRP板抗彎加固RC梁橋的實(shí)用設(shè)計(jì)方法研究[D];哈爾濱工業(yè)大學(xué);2016年
6 陳大p,
本文編號:1780919
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1780919.html