分布式光纖感溫火災(zāi)探測(cè)系統(tǒng)在公路隧道中應(yīng)用的若干影響因素研究
本文選題:分布式光纖 + 火災(zāi)探測(cè) ; 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2014年碩士論文
【摘要】:分布式光纖感溫火災(zāi)探測(cè)系統(tǒng)(Distributed Optical Fiber Temperature Fire Detection System,以下簡(jiǎn)稱DTS)能在隧道火災(zāi)發(fā)生初期給出報(bào)警響應(yīng),對(duì)災(zāi)害應(yīng)急及時(shí)開展、控制火災(zāi)規(guī)模、減少人員傷亡和財(cái)產(chǎn)損失有重大作用,已被廣泛應(yīng)用于公路隧道火災(zāi)監(jiān)測(cè)中。然而,DTS在公路隧道火災(zāi)中應(yīng)用的實(shí)驗(yàn)研究較少,且對(duì)于DTS在公路隧道安裝參數(shù)(距頂高度、敷設(shè)間距)及適用的隧道高度,國(guó)內(nèi)尚未出臺(tái)專門的國(guó)家級(jí)規(guī)范,各地方標(biāo)準(zhǔn)和國(guó)外規(guī)范的規(guī)定也不盡相同。因此開展DTS在公路隧道中應(yīng)用的相關(guān)影響因素研究,對(duì)于實(shí)際應(yīng)用和推廣具有重大意義。 本文在廣泛調(diào)研國(guó)內(nèi)外隧道火災(zāi)探測(cè)技術(shù)及DTS應(yīng)用現(xiàn)狀基礎(chǔ)上,首先介紹了DTS系統(tǒng)測(cè)溫原理及結(jié)構(gòu)設(shè)計(jì),并對(duì)實(shí)驗(yàn)使用的DTS系統(tǒng)的溫度精度、定位精度和響應(yīng)時(shí)間等基礎(chǔ)性指進(jìn)行測(cè)定,表明所采用的DTS系統(tǒng)符合實(shí)驗(yàn)要求,可以開展后續(xù)真實(shí)火災(zāi)實(shí)驗(yàn)。 其次,搭建了30m×7.6m×7.8m全尺寸隧道火災(zāi)實(shí)驗(yàn)平臺(tái),開展真實(shí)火災(zāi)實(shí)驗(yàn)研究,通過對(duì)隧道溫度分布及DTS報(bào)警響應(yīng)情況進(jìn)行對(duì)比分析,得出如下結(jié)論: (1)隧道縱向通風(fēng)時(shí),DTS報(bào)警位置較實(shí)際火源位置隨風(fēng)向發(fā)生偏移,報(bào)警時(shí)間隨著風(fēng)速增加變長(zhǎng),實(shí)際隧道火災(zāi)探測(cè)中需考慮通風(fēng)對(duì)DTS探測(cè)位置的偏移影響。 (2)火源功率和位置影響了隧道內(nèi)的溫度分布,與DTS響應(yīng)時(shí)間均呈正相關(guān)關(guān)系,小功率火源火災(zāi)初期溫度、位于車底和地面的火源引起的火災(zāi)都可能達(dá)不到一般定溫型火災(zāi)報(bào)警閾值,火災(zāi)定溫報(bào)警失效,需設(shè)置差溫報(bào)警對(duì)其響應(yīng)。 (3)光纖安裝距隧道頂部100mm時(shí)的溫升速度和報(bào)警響應(yīng)時(shí)間較距頂300mm時(shí)快,通過各地方規(guī)范的對(duì)比,為更有利于火災(zāi)探測(cè),DTS在公路隧道內(nèi)實(shí)際應(yīng)用時(shí)適宜安裝位置應(yīng)為距隧道頂部50-100mm。 第三,通過對(duì)不同高度(5m、6m、7m、8m、9m、10m、11m、12m)隧道火災(zāi)發(fā)生發(fā)展過程的FDS數(shù)值模擬,對(duì)比分析發(fā)現(xiàn),隨著隧道高度增加,相同距頂安裝高度的DTS報(bào)警位置偏移量增大,報(bào)警響應(yīng)時(shí)間延長(zhǎng),達(dá)到12m高度時(shí),定溫探測(cè)報(bào)警失效。 最后,采用真實(shí)火災(zāi)實(shí)驗(yàn)和CFD數(shù)值模擬相結(jié)合的方法,研究結(jié)果表明DTS最大敷設(shè)間距與隧道高度有直接關(guān)系,敷設(shè)間距隨著隧道高度增加而減小,并給出了不同高度隧道對(duì)應(yīng)的DTS最大敷設(shè)間距建議值。
[Abstract]:The distributed Optical Fiber Temperature Fire Detection system (DTSs) can give alarm response in the early stage of tunnel fire, which plays an important role in developing disaster emergency, controlling fire scale, reducing casualties and property loss.It has been widely used in highway tunnel fire monitoring.However, there are few experimental studies on the application of DTS in highway tunnel fire, and there is no national standard for DTS installation parameters (distance from top height, laying distance) and applicable tunnel height in China.Local standards and foreign norms are not the same.Therefore, it is of great significance to study the influencing factors of the application of DTS in highway tunnel.Based on the investigation of tunnel fire detection technology and the application of DTS at home and abroad, this paper first introduces the principle and structure design of DTS system temperature measurement, and the temperature precision of DTS system used in experiment.The measurement of the positioning accuracy and response time shows that the DTS system can meet the requirements of the experiment and can carry out the follow-up real fire experiment.Secondly, the fire experiment platform of 30m 脳 7.6m 脳 7.8m full-scale tunnel is built, and the real fire experimental research is carried out. Through the comparison and analysis of tunnel temperature distribution and DTS alarm response, the conclusions are as follows:1) in longitudinal ventilation of tunnel, the alarm position of DTS is offset with the wind direction, and the alarm time increases with the increase of wind speed. The influence of ventilation on the location of DTS should be considered in the actual tunnel fire detection.(2) the power and position of the fire source affect the temperature distribution in the tunnel, and are positively correlated with the response time of DTS.The fire caused by the fire source located at the bottom of the vehicle and the ground may not reach the general fixed temperature fire alarm threshold, and the fire fixed temperature alarm is invalid, and the differential temperature alarm should be set to respond to the fire alarm.The temperature rise speed and alarm response time of optical fiber installation from the top of the tunnel is faster than that from the top of the tunnel. Through the comparison of the local specifications, the suitable installation position should be 50-100 mm. from the top of the tunnel in order to facilitate the practical application of the 100mm in the highway tunnel.Thirdly, through the FDS numerical simulation of the fire development process of the tunnel fire at different heights (5m / 6m / 7m / 8m / 9m / 10m / 10m / 10m / 11m / 12m), it is found that with the increase of the tunnel height, the offset of the DTS alarm position of the same height from the top of the tunnel increases, and the alarm response time is prolonged.When the height of 12m is reached, the fixed temperature detection and alarm fail.Finally, by combining real fire experiments with CFD numerical simulation, the results show that the maximum laying distance of DTS is directly related to tunnel height, and the laying spacing decreases with the increase of tunnel height.At the same time, the maximum distance between DTS and tunnel with different height is given.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U458
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 耿軍平,許家棟,韋高,郭陳江,李焱;基于布里淵散射的分布式光纖傳感器的進(jìn)展[J];測(cè)試技術(shù)學(xué)報(bào);2002年02期
2 黃尚廉,梁大巍,駱飛;分布式光纖傳感器現(xiàn)狀與動(dòng)向[J];光電工程;1990年03期
3 張?jiān)谛?王劍鋒,余向東,郭寧,吳孝彪,馮海琪,InsooS.KIM,SangkiOH,YoheeKIM;Raman散射型分布式光纖溫度測(cè)量方法的研究[J];光電子·激光;2001年06期
4 張?jiān)谛?余向東,郭寧,吳孝彪;分布光纖Raman光子傳感器系統(tǒng)的優(yōu)化設(shè)計(jì)[J];光電子·激光;1999年02期
5 易賽莉;;公路隧道火災(zāi)煙氣特性數(shù)值模擬分析[J];公路交通科技;2010年01期
6 盧彭真,葛蔚敏,樓茂森;無損檢測(cè)技術(shù)在道橋中的應(yīng)用與發(fā)展[J];公路交通技術(shù);2004年06期
7 陳繼宣;龔華平;張?jiān)谛?;光纖傳感器的工程應(yīng)用及發(fā)展趨勢(shì)[J];光通信技術(shù);2009年10期
8 張?jiān)谛?沈?yàn)槊?郭寧,吳孝彪,余向東;分布光纖喇曼光子傳感器系統(tǒng)的一種解調(diào)方法[J];光子學(xué)報(bào);1998年05期
9 韓永溫;郝文杰;張林行;張曉飛;呂中虎;;基于拉曼散射原理的分布式光纖測(cè)溫系統(tǒng)研究[J];半導(dǎo)體光電;2013年02期
10 宮經(jīng)寬;劉樾;;光纖傳感器及其應(yīng)用技術(shù)[J];航空精密制造技術(shù);2010年05期
,本文編號(hào):1772712
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1772712.html