短時交通流復(fù)雜動力學(xué)特性分析及預(yù)測
本文關(guān)鍵詞:短時交通流復(fù)雜動力學(xué)特性分析及預(yù)測,,由筆耕文化傳播整理發(fā)布。
摘要
為揭示短時交通流的內(nèi)在動態(tài)特性,利用非線性方法對交通流混沌特性進(jìn)行識別,為短時交通流的預(yù)測提供基礎(chǔ). 基于混沌理論對交通流時間序列進(jìn)行相空間重構(gòu),利用C-C算法計算時間延遲和嵌入維數(shù),采用Grassberger-Procaccia算法計算吸引子關(guān)聯(lián)維數(shù),通過改進(jìn)小數(shù)據(jù)量法計算最大Lyapunov指數(shù)來判別交通流時間序列的混沌特性. 針對局域自適應(yīng)預(yù)測方法在交通流多步預(yù)測中預(yù)測器系數(shù)無法調(diào)節(jié)的問題,提出了交通流多步自適應(yīng)預(yù)測方法. 通過實測數(shù)據(jù)計算,結(jié)果表明: 2,4和5min三種統(tǒng)計尺度的交通流時間序列均具有混沌特性;改進(jìn)的小數(shù)據(jù)量法能夠準(zhǔn)確地計算出最大Lyapunov指數(shù);構(gòu)建的交通流多步自適應(yīng)預(yù)測模型能夠有效地預(yù)測交通流量的變化. 為智能交通系統(tǒng)誘導(dǎo)和控制提供了依據(jù).
AbstractIn order to reveal the internal dynamic property of short-term traffic flow, the nonlinear analysis method is used to identify the chaotic property of traffic flow which is the basis for the prediction of the traffic flow time series. Traffic flow time series is reconstructed in phase-space based on chaos theory. The embedding dimension and delay time are first calculated via the C-C method. The correlative dimension of attractor is then calculated with the Grassberger-Procaccia method. The largest Lyapunov exponent of traffic flow set is calculated on the basis of the improved small data set method to verify the presence of the chaos in traffic flow time series. A novel multi-step adaptive prediction method is proposed to solve the problem of adjusting the filter parameters of the chaos local adaptive prediction method during traffic flow multi-step prediction. The traffic flow time series are found to have chaotic properties in different statistical scales of 2, 4, and 5 min and show that the improved small data set method can accurately evaluate the chaotic property for traffic flow time series, and that the multi-step adaptive prediction method is capable of effectively predicting its fluctuation, which provides a useful reference for traffic guidance and control.
收稿日期:2013-07-29
基金資助國家重點基礎(chǔ)研究發(fā)展計劃(批準(zhǔn)號:2012CB723303)和國家自然科學(xué)基金青年科學(xué)基金(批準(zhǔn)號:51308058)資助的課題.
Project supported by the National Basic Research Program of China (Grant No. 2012CB723303) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51308058).
引用本文[中文] 張洪賓, 孫小端, 賀玉龍. 短時交通流復(fù)雜動力學(xué)特性分析及預(yù)測[J]. 物理學(xué)報, 2014, 63(4): 040505. [英文] Zhang Hong-Bin, Sun Xiao-Duan, He Yu-Long. Analysis and prediction of complex dynamical characteristics of short-term traffic flow[J]. Acta Phys. Sin., 2014, 63(4): 040505.
使用本文
PDF | 加入我的文獻(xiàn)中心
PACS
[1] Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285 [2] Barana G, Tsuda I 1993 Phys. Lett. A 175 421 [3] Briggs K 1990 Phys. Lett. A 151 27 [4] Rosenstein M T, Collins J, Deluca C J 1993 Physica D 65 117 [5] Chen Z, Liang P 2000 J. Guizhou Normal Univ. (Natural Science) 18 58(in Chinese) [陳琢, 梁蓓 2000 貴陽師范大學(xué)學(xué)報 (自然科學(xué)版) 18 58] [6] Zhang Y M, Qu S R, Wen K G 2009 China Civil Engineer. J. 42 119 (in Chinese) [張玉梅, 曲仕茹, 溫凱歌 2009 土木工程學(xué)報 42 119] [7] Lu Y, Chen Y H, He G G 2007 Systems Engineer. Theor. Pract. 27 85 (in Chinese) [盧宇, 陳宇紅, 賀國光 2007 系統(tǒng)工程理論與實踐 27 85] [8] Ding T, Zhou H C 2004 Sys. Engn. Electron 26 338 (in Chinese) [丁濤, 周惠成 2004 系統(tǒng)工程與電子技術(shù) 26 338] [9] Zhang J S, Xiao X C 2000 Acta Phys. Sin. 49 403 (in Chinese) [張家樹, 肖先賜 2000 物理學(xué)報 49 403] [10] Gan J C, Xiao X C 2003 Acta Phys. Sin. 52 1096 (in Chinese) [甘建超, 肖先賜 2003 物理學(xué)報 52 1096] [11] Gan J C, Xiao X C 2003 Acta Phys. Sin. 52 2996 (in Chinese) [甘建超, 肖先賜 2003 物理學(xué)報 52 2996] [12] Zhang J S, Dang J L, Li H C 2007 Acta Phys. Sin. 56 67 (in Chinese) [張家樹, 黨建亮, 李恒超 2007 物理學(xué)報 56 67] [13] Zhang Y M, Qu S R 2010 Appl. Res. Comput. 27 4486 in Chinese) [張玉梅, 曲仕茹 2010 計算機(jī)應(yīng)用研究 27 4486] [14] Takens F 1981 Dynamical System and Turbulence, Lecture Notes in Mathematics (Vol. 898) (Berlin: Springer-Verlag) p230 [15] Dong L, Gao S, Liao X Z 2007 Acta Energiae Solaris Sin. 28 1290 (in Chinese) [冬雷, 高爽, 廖曉鐘 2007 太陽能學(xué)報 28 1290] [16] Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48 [17] Brock W A, Hsieh D, Lebaron A B 1991 Nonlinear Dynamics, Chaos and Instability: Statistical Theory and Economic Evidence (Cambridge: MTT Press) p217 [18] Grassberger P, Procaccia I 1983 Physica D 9 1898 [19] Lü J H, Lu J A, Chen S H 2002 Chaotic Time Series Analysis and Applications (Wuhan: Wuhan University Press) p116 (in Chinese) [呂金虎, 陸君安, 陳士華 2002 混沌時間序列分析及其應(yīng)用 (武漢: 武漢大學(xué)出版社) 第116頁] [20] Meng Q F, Zhang Q, Mu W Y 2006 Acta Phys. Sin. 55 1666 (in Chinese) [孟慶芳, 張強(qiáng), 牟文英 2006 物理學(xué)報 55 1666]
數(shù)據(jù)正在加載中...
本文關(guān)鍵詞:短時交通流復(fù)雜動力學(xué)特性分析及預(yù)測,由筆耕文化傳播整理發(fā)布。
本文編號:165102
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/165102.html