改進(jìn)分層遺傳算法在斜拉橋主梁損傷識(shí)別中的應(yīng)用
發(fā)布時(shí)間:2018-03-18 01:35
本文選題:斜拉橋 切入點(diǎn):損傷識(shí)別 出處:《土木建筑與環(huán)境工程》2014年06期 論文類型:期刊論文
【摘要】:標(biāo)準(zhǔn)遺傳算法在解決像斜拉橋這類復(fù)雜結(jié)構(gòu)的損傷識(shí)別問(wèn)題時(shí)會(huì)出現(xiàn)提前收斂,即所謂"早熟"的現(xiàn)象。為了避免此現(xiàn)象的發(fā)生,提高損傷識(shí)別的效率與精度,提出一種基于改進(jìn)分層遺傳算法的斜拉橋主梁損傷識(shí)別方法。采用索力變化作為優(yōu)化目標(biāo)函數(shù),將3種具有不同遺傳算子的標(biāo)準(zhǔn)遺傳算法與變量微調(diào)和災(zāi)變策略相結(jié)合,形成了一種具有災(zāi)變特性的分層遺傳算法,以實(shí)驗(yàn)室獨(dú)塔斜拉橋模型作為研究對(duì)象進(jìn)行了數(shù)值仿真,結(jié)果表明:改進(jìn)的分層遺傳算法成功的避免了標(biāo)準(zhǔn)遺傳算法"早熟"現(xiàn)象的發(fā)生,能快速有效的完成斜拉橋主梁各種損傷的識(shí)別;同時(shí)對(duì)此方法進(jìn)行抗噪性分析發(fā)現(xiàn),該方法具有良好的抗噪能力。
[Abstract]:In order to avoid this phenomenon and improve the efficiency and accuracy of damage identification, the standard genetic algorithm can solve the damage identification problem of complex structures such as cable-stayed bridges, which is called "premature convergence". A damage identification method for cable-stayed bridge girder based on improved hierarchical genetic algorithm is proposed. Using the variation of cable force as the optimization objective function, three standard genetic algorithms with different genetic operators are combined with variable fine-tuning and catastrophe strategy. A hierarchical genetic algorithm with catastrophic characteristics is developed, and the model of single-tower cable-stayed bridge in laboratory is used as a numerical simulation object. The results show that the improved hierarchical genetic algorithm can successfully avoid the occurrence of "premature" phenomenon of standard genetic algorithm, and can quickly and effectively identify all kinds of damage of main girder of cable-stayed bridge. This method has good anti-noise ability.
【作者單位】: 石家莊鐵道大學(xué)工程力學(xué)系;
【基金】:國(guó)家自然科學(xué)基金(50778116) 河北省自然科學(xué)基金(E2012210061) 河北省教育廳重點(diǎn)項(xiàng)目(ZH2012068)
【分類號(hào)】:U448.27
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 朱勁松;肖汝誠(chéng);;基于定期檢測(cè)與遺傳算法的大跨度斜拉橋損傷識(shí)別[J];土木工程學(xué)報(bào);2006年05期
2 黃民水;吳s,
本文編號(hào):1627440
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1627440.html
最近更新
教材專著