纖維瀝青應(yīng)力吸收層中纖維與瀝青的作用機(jī)理研究
本文選題:應(yīng)力吸收層 切入點(diǎn):纖維 出處:《重慶交通大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:剛?cè)釓?fù)合路面是一種長(zhǎng)壽命路面結(jié)構(gòu)形式,,這種路面結(jié)構(gòu)減少了瀝青的使用量,同時(shí)彌補(bǔ)了剛性路面行車(chē)舒適度的不足。它剛?cè)嵯酀?jì),改善了道路的使用性能。但這種路面結(jié)構(gòu)中的剛性基層存在施工接縫和原生裂紋缺陷,在復(fù)雜的交通組成和惡劣環(huán)境因素的聯(lián)合作用下,復(fù)合路面會(huì)出現(xiàn)很多早期病害,反射裂縫就是其中一種常見(jiàn)病害。纖維瀝青應(yīng)力吸收層技術(shù)可以有效降低、延緩剛?cè)釓?fù)合型路面的反射裂縫,然而然而我國(guó)引入這種技術(shù)時(shí)間較短,相關(guān)性能及機(jī)理研究較少。 研究中先以表面能理論為基礎(chǔ),對(duì)纖維、瀝青以及水泥砼切片進(jìn)行接觸角測(cè)量實(shí)驗(yàn),通過(guò)計(jì)算粘附功對(duì)材料進(jìn)行優(yōu)選及評(píng)價(jià);然后建立了單根纖維有限元接觸模型,模擬單根纖維在基體中的情況,分析纖維-瀝青界面的受力特點(diǎn);最后,建立纖維織物有限元模型,分析纖維織物整體力學(xué)性能。研究得到主要的結(jié)論如下所示: ①4號(hào)纖維與瀝青的粘附功最大,往下依次是2號(hào)纖維、1號(hào)纖維、3號(hào)纖維;橡膠瀝青與纖維的粘附功最大,往下依次是SBS改性瀝青、乳化瀝青。所以,在纖維封層這種復(fù)合材料中使用4號(hào)纖維和橡膠瀝青更加有利于增強(qiáng)其結(jié)構(gòu)穩(wěn)定性、提高其抗裂效果。 ②橡膠瀝青與水泥砼切片的粘附功最大,往下依次是SBS改性瀝青、乳化瀝青。所以選用橡膠瀝青最為纖維封層的膠結(jié)材料可以加強(qiáng)纖維封層與水泥砼面板的粘結(jié)力。 ③對(duì)單根纖維模型進(jìn)行受力模擬發(fā)現(xiàn),ANSYS計(jì)算的纖維-瀝青界面的剪應(yīng)力變化趨勢(shì)與彈塑性基體模型的相似。 ④當(dāng)纖維封層受拉達(dá)到極限破壞狀態(tài)時(shí),如果纖維過(guò)短,纖維將很容易從基體中拔出,纖維的高強(qiáng)性能將得不到充分發(fā)揮,所以為使纖維的強(qiáng)度得到充分利用,其長(zhǎng)度宜超過(guò)一臨界值;但纖維過(guò)長(zhǎng),其分擔(dān)擴(kuò)散基體應(yīng)力的作用增長(zhǎng)不明顯,會(huì)造成浪費(fèi)。所以在纖維瀝青碎石封層的設(shè)計(jì)時(shí),應(yīng)選擇合理的纖維長(zhǎng)度。 ⑤纖維的增強(qiáng)作用與纖維/瀝青界面的粘結(jié)性能密切相關(guān):界面粘結(jié)太弱,將無(wú)法充分發(fā)揮纖維的增強(qiáng)作用,從而導(dǎo)致材料和經(jīng)濟(jì)的浪費(fèi);粘結(jié)良好的界面不僅可以很好的傳遞應(yīng)力,同時(shí)也可以延緩界面的脫粘。所以為了增強(qiáng)材料界面的粘附性能,我們可以合理地選擇纖維封層的組成材料,這也可以有效提高纖維封層的力學(xué)性能。 ⑥纖維的加入能夠限制、約束瀝青基體的應(yīng)變;纖維端部應(yīng)力集中造成的纖維端部過(guò)大的應(yīng)變可能使纖維端部與瀝青基體脫粘,所以纖維端部對(duì)纖維封層增強(qiáng)作用的貢獻(xiàn)非常小。 ⑦纖維織物模型中加入短纖維(長(zhǎng)度是長(zhǎng)纖維的1/6)能夠降低長(zhǎng)纖維界面剪應(yīng)力的合力,可以進(jìn)一步吸收、分散基體應(yīng)力,增強(qiáng)了模型的整體力學(xué)性能。 ⑧纖維封層中的纖維是二維亂向分布的,應(yīng)力作用方向上的纖維利用率有限,纖維的分布與取向?qū)奢d作用下纖維的利用率有很大的影響,纖維的取向越接近荷載作用方向,纖維的利用效率愈高。
[Abstract]:Rigid flexible composite pavement is a long-life pavement structure, the pavement structure to reduce the amount of asphalt, and compensate for the lack of rigid pavement driving comfort. It improves the performance of the road move among force and soft, rigid base. But this pavement structure exists in the application of Engineering defect seams and original cracks, the combined effect of traffic the composition and the harsh environment of complex factors, there will be a lot of composite pavement early disease, is one of the most common diseases of reflection crack. The fiber asphalt stress absorbing layer technology can effectively reduce the reflection crack, rigid flexible composite pavement type delay, however our country introduces this technology in a relatively short time, less research related to performance and the mechanism.
In the first study on the basis of surface energy theory, the fiber asphalt and cement concrete sections for contact angle measurement experiment, by calculating the adhesion work selection and evaluation of materials; and then set up a single fiber contact finite element model to simulate the single fiber in the matrix analysis, the interface of Fiber Asphalt Stress Characteristics; finally, a finite element model of fiber fabric, analysis of fabric mechanical properties. The main conclusions are as follows:
The work of adhesion No. 4 fiber and asphalt is the largest, followed by a 2 fiber, No. 1, No. 3 fiber, fiber; adhesion work of asphalt rubber and fiber is the largest, followed by SBS modified asphalt, emulsified asphalt. Therefore, more conducive to enhance the stability of the structure using 4 fiber and rubber asphalt in fiber the seal in the composite, improve its crack resistance.
2. The adhesion work of rubber asphalt and cement concrete slice is the largest, followed by SBS modified asphalt and emulsified asphalt. Therefore, the bonding material of rubber asphalt and the most fiber sealing layer can enhance the bonding force between fiber seal and cement concrete panel.
3. The stress simulation of a single fiber model shows that the shear stress of the fiber asphalt interface calculated by ANSYS is similar to that of the elastoplastic matrix model.
When the fiber seal tension reaches the ultimate state, if the fiber is too short, the fiber will be easily pulled out from the matrix, high performance fibers can not be brought into full play, so as to make full use of the strength of the fiber, its length should exceed a critical value; but the fiber is too long, its share of diffusion the matrix stress growth is not obvious, will cause waste. So in the design of fiber asphalt pavement surface, fiber length should be selected.
The enhancement effect of fiber and fiber / bonding properties of asphalt interface is closely related to the interface bond is too weak, will not be able to give full play to the enhancement of the fiber, which leads to the waste of material and economy; good bonding interface not only can well transfer the stress, but also can delay the debonding interface. So in order to enhance the adhesion the performance of the material interface, we can reasonably choose the material composition of fiber seal, which can effectively improve the mechanical properties of fiber seal.
The fiber is added to limit strain constraint matrix asphalt strain; fiber end fiber end stress concentration caused by too large may make the fiber end with asphalt matrix debonding, so the fiber ends of the fiber seal enhancement contribution is very small.
Join the short fiber fabric model (long fiber length is 1/6) can reduce the force of long fiber interfacial shear stress, can further absorption, dispersion matrix stress, enhance the overall mechanical properties of the model.
The fiber seal fiber in two-dimensional random distribution, stress direction of the fiber utilization rate is limited, distribution and orientation of the utilization of fiber on fiber loading rate has a great influence on the orientation of the fiber is close to the loading direction, the fiber utilization efficiency is high.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:U414
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧銳;李敏;張佐光;賈晶晶;;接觸角法測(cè)玄武巖及玻璃纖維表面能實(shí)驗(yàn)[J];北京航空航天大學(xué)學(xué)報(bào);2007年11期
2 高金岐,羅曉輝,徐世法,王勁松;瀝青粘結(jié)層抗剪強(qiáng)度試驗(yàn)分析[J];北京建筑工程學(xué)院學(xué)報(bào);2003年01期
3 徐闖,郝宏偉;瀝青混凝土路面與水泥混凝土路面的選用[J];東北林業(yè)大學(xué)學(xué)報(bào);2002年06期
4 劉云;錢(qián)振東;;大跨徑鋼橋面鋪裝動(dòng)響應(yīng)分析(英文)[J];Journal of Southeast University(English Edition);2008年02期
5 馮德成;宋宇;;瀝青路面層間結(jié)合狀態(tài)試驗(yàn)與評(píng)價(jià)方法研究[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2007年04期
6 王端宜;張肖寧;王紹懷;;水泥混凝土路面瀝青加鋪層材料的設(shè)計(jì)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年12期
7 王斌;楊軍;張磊;;利用混凝土損傷塑性模型評(píng)價(jià)CRCP+AC復(fù)合式路面的損傷演變[J];土木建筑與環(huán)境工程;2010年06期
8 羅曉斌;朱定一;石麗敏;;基于接觸角法計(jì)算固體表面張力的研究進(jìn)展[J];科學(xué)技術(shù)與工程;2007年19期
9 閆修海;于金成;王建國(guó);賈成賀;梁剛;;纖維封層技術(shù)的引進(jìn)與應(yīng)用[J];北方交通;2008年08期
10 資建民,周紅霞,李雙泉,袁蓉;舊水泥混凝土路面瀝青罩面層的設(shè)計(jì)與施工探討[J];交通科技;2005年02期
本文編號(hào):1612383
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1612383.html