天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 交通工程論文 >

基于動(dòng)態(tài)響應(yīng)的簡(jiǎn)支梁橋移動(dòng)荷載識(shí)別研究

發(fā)布時(shí)間:2018-02-13 09:55

  本文關(guān)鍵詞: 移動(dòng)荷載識(shí)別 BP神經(jīng)網(wǎng)絡(luò) 動(dòng)力響應(yīng) 模型試驗(yàn) 出處:《內(nèi)蒙古科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文


【摘要】:橋梁的移動(dòng)荷載識(shí)別是橋梁結(jié)構(gòu)健康監(jiān)測(cè)的重要環(huán)節(jié),獲得精確可靠的荷載數(shù)據(jù)可以對(duì)橋梁設(shè)計(jì)中選用的荷載進(jìn)行校核,對(duì)荷載譜進(jìn)行分析也可為結(jié)構(gòu)疲勞分析提供更接近實(shí)際的依據(jù)。而目前橋梁移動(dòng)荷載識(shí)別技術(shù)還不夠成熟,而且利用車橋系統(tǒng)模型識(shí)別移動(dòng)荷載是一個(gè)反卷積求解問(wèn)題,,其數(shù)學(xué)反演過(guò)程往往是不適定的,導(dǎo)致了這種方法對(duì)噪聲很敏感。 本文研究了將BP神經(jīng)網(wǎng)絡(luò)用于橋梁移動(dòng)荷載識(shí)別的理論和方法,對(duì)一跨度為30m的簡(jiǎn)支梁橋進(jìn)行了移動(dòng)荷載識(shí)別的數(shù)值仿真,分析了橋梁撓度和應(yīng)變對(duì)移動(dòng)荷載的敏感性,討論了網(wǎng)絡(luò)的不同轉(zhuǎn)移函數(shù)組合和算法對(duì)識(shí)別結(jié)果的影響,研究了不同荷載工況下的識(shí)別結(jié)果和噪聲的影響,并通過(guò)試驗(yàn)驗(yàn)證了該方法的合理性。 研究結(jié)果表明:用人工神經(jīng)網(wǎng)絡(luò)方法識(shí)別橋梁移動(dòng)荷載是可行的;橋梁應(yīng)變響應(yīng)比撓度響應(yīng)對(duì)移動(dòng)荷載更敏感;網(wǎng)絡(luò)不同組合的轉(zhuǎn)移函數(shù)對(duì)荷載識(shí)別結(jié)果影響不大,網(wǎng)絡(luò)的均方誤差最大的為3.7288,最小的為2.8518,相關(guān)系數(shù)均大于0.97,而訓(xùn)練方法對(duì)結(jié)果有很大影響,網(wǎng)絡(luò)的均方誤差在2.491到1677.6382不等,相關(guān)系數(shù)也從0.1354到0.97717不等;網(wǎng)絡(luò)對(duì)荷載位置的識(shí)別結(jié)果很好,順利識(shí)別出了荷載的上下橋狀態(tài)和在橋上的位置,最大誤差為0.54m;網(wǎng)絡(luò)對(duì)軸距識(shí)別的精度好壞變化性較大,總體規(guī)律是軸距越大,車速越慢識(shí)別效果越好,速度從25m/s降到5m/s時(shí)網(wǎng)絡(luò)的正確識(shí)別率增加了26.43%;網(wǎng)絡(luò)對(duì)荷載進(jìn)行識(shí)別時(shí),在車輛的上下橋段識(shí)別誤差比車輛完全在橋上時(shí)的識(shí)別誤差大,不同的軸距和速度對(duì)荷載的識(shí)別影響也很大,車速和軸距越大網(wǎng)絡(luò)的識(shí)別精度越差,反之越好;軸距對(duì)速度識(shí)別的精度影響不大,速度識(shí)別的精度與速度本身的大小有關(guān),速度越大識(shí)別的精度越低;該方法具有很好的抗噪能力,在噪聲水平20%的情況下,網(wǎng)絡(luò)的正確識(shí)別率仍大于60%。 試驗(yàn)結(jié)果表明:模型梁一到四階頻率相對(duì)誤差分別為5.3%、11.6%、13.5%、15.7,模型梁的阻尼很小,一階模態(tài)阻尼為0.618%;最大位置識(shí)別誤差為0.464m;速度識(shí)別相對(duì)誤差在5%以內(nèi);識(shí)別出的動(dòng)荷載時(shí)程曲線在靜載線上下波動(dòng)。
[Abstract]:Bridge moving load identification is an important link in bridge structure health monitoring. Accurate and reliable load data can be used to check the load selected in bridge design. The analysis of load spectrum can also provide a more practical basis for structural fatigue analysis, but the identification technology of bridge moving load is not mature enough, and the identification of moving load using vehicle-bridge system model is a deconvolution problem. The mathematical inversion process is often ill-posed, which leads to the sensitivity of this method to noise. In this paper, the theory and method of applying BP neural network to the identification of moving loads of bridges are studied. The moving load identification of a simply supported beam bridge with a span of 30 m is simulated, and the sensitivity of deflection and strain of the bridge to moving loads is analyzed. The effects of different transfer function combinations and algorithms on the recognition results are discussed. The effects of identification results and noise under different load conditions are studied. The rationality of the method is verified by experiments. The results show that the method of artificial neural network is feasible to identify the moving load of bridge, the strain response of bridge is more sensitive to the moving load than the deflection response, and the transfer function of different combinations of the network has little effect on the load identification results. The mean square error of the network is 3.7288, the least is 2.8518, the correlation coefficient is more than 0.97, and the training method has a great influence on the result. The mean square error of the network ranges from 2.491 to 1677.6382, and the correlation coefficient ranges from 0.1354 to 0.97717. The result of network recognition of load position is very good, and the load upper and lower bridge status and position on the bridge are recognized smoothly, the maximum error is 0.54 m, the accuracy of network identification of wheelbase is more variable, the overall rule is that the greater the wheelbase, the bigger the network is. The slower the speed, the better, when the speed drops from 25m / s to 5m / s, the correct recognition rate of the network increases by 26.43. When the network recognizes the load, the recognition error between the upper and lower segments of the vehicle is greater than that of the vehicle when the vehicle is completely on the bridge. Different wheelbase and speed have great influence on the identification of load, the greater the speed and the greater the wheelbase, the worse the recognition accuracy is, the better the vice versa; the less the effect of wheelbase on the accuracy of velocity identification, the more the accuracy of velocity recognition is related to the speed itself. The higher the speed is, the lower the accuracy is, and the method has a good anti-noise capability, and the correct recognition rate of the network is still greater than 60% when the noise level is 20%. The experimental results show that the relative errors of the first to fourth order frequencies of the model beams are 5.311.6 and 13.53.The damping of the model beams is very small, the first order modal damping is 0.618, the maximum position identification error is 0.464m, the relative error of velocity identification is less than 5%. The identified dynamic load history curve fluctuates up and down the static load line.
【學(xué)位授予單位】:內(nèi)蒙古科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U441.2;U448.217

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳震;余嶺;朱軍華;;基于預(yù)處理共軛梯度法的橋梁移動(dòng)荷載識(shí)別[J];長(zhǎng)江科學(xué)院院報(bào);2008年02期

2 唐秀近;時(shí)域識(shí)別動(dòng)態(tài)載荷的精度問(wèn)題[J];大連理工大學(xué)學(xué)報(bào);1990年01期

3 李忠獻(xiàn);王波;陳鋒;;橋梁移動(dòng)荷載的識(shí)別與參數(shù)分析[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年S1期

4 袁向榮,陳恩利,TommyHung-TinChan;由響應(yīng)識(shí)別橋上移動(dòng)荷載[J];工程力學(xué);1997年04期

5 王曉軍;楊海峰;邱志平;張紅;;基于Green函數(shù)的動(dòng)態(tài)載荷區(qū)間識(shí)別方法研究[J];固體力學(xué)學(xué)報(bào);2011年01期

6 滿洪高,卜建清,袁向榮;基于廣義正交域理論識(shí)別橋上移動(dòng)載荷的方法研究[J];石家莊鐵道學(xué)院學(xué)報(bào);1999年04期

7 陳鋒,袁向榮,李明;移動(dòng)載荷識(shí)別的B-樣條函數(shù)逼近法[J];石家莊鐵道學(xué)院學(xué)報(bào);2003年01期

8 袁向榮,陳思利,楊紹普;由梁的響應(yīng)識(shí)別移動(dòng)荷載[J];振動(dòng).測(cè)試與診斷;1995年03期

9 吳大宏,趙人達(dá);基于神經(jīng)網(wǎng)絡(luò)的混凝土橋梁荷載識(shí)別方法研究[J];中國(guó)鐵道科學(xué);2002年01期

10 袁向榮;;梁振動(dòng)響應(yīng)曲線滑動(dòng)擬合法及在移動(dòng)荷載識(shí)別中的應(yīng)用[J];噪聲與振動(dòng)控制;2006年03期



本文編號(hào):1507884

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1507884.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7cdb1***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com