超大噸位鋼絞線斜拉索靜力性能計(jì)算分析
本文關(guān)鍵詞:超大噸位鋼絞線斜拉索靜力性能計(jì)算分析 出處:《重慶交通大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 超大噸位鋼絞線斜拉索 靜力性能 有限元分析 彈塑性 錨具
【摘要】:東水門大橋和千廝門大橋合稱為重慶兩江大橋,,二者均為單索面矮塔斜拉橋,斜拉索為139Φ15.2mm的超大噸位鋼絞線斜拉索,單根索的極限承載力36140kN,現(xiàn)有的試驗(yàn)設(shè)備不能滿足如此大噸位斜拉索的靜載試驗(yàn)。 本文選取具有相同錨孔拓?fù)浣Y(jié)構(gòu)的31孔、73孔和139孔錨具為研究對(duì)象,采用ANSYS軟件,利用錨具的對(duì)稱性建立31孔、73孔和139孔三個(gè)鋼絞線斜拉索的1/12精細(xì)三維錨具模型,模型中考慮了夾片與錨板的摩擦接觸、錨板材料的彈塑性和幾何非線性。采用與靜載試驗(yàn)中相同的加載方式,對(duì)加載過程中錨板的受力進(jìn)行了分析,并通過對(duì)31、73和139孔錨具在各加載階段中應(yīng)力、應(yīng)變等參數(shù)的對(duì)比,探索利用較小噸位鋼絞線斜拉索代替超大噸位鋼絞線斜拉索進(jìn)行靜載性能試驗(yàn)的可行性。 本文首先模擬了139孔斜拉索錨具在加載過程中的力學(xué)行為,通過鋼絞線回縮值、錨板應(yīng)力、應(yīng)變和變形的分析,得到了其在加載過程中的分布和發(fā)展規(guī)律。 然后,進(jìn)行了31孔、73孔和139孔三個(gè)模型計(jì)算結(jié)果的對(duì)比分析,得到的主要結(jié)果如下: ①在鋼絞線回縮值對(duì)比中,73孔與139孔的最大差異率為6.82%,31孔與139孔的最大差異率為10.61%; ②在錨板整體分析對(duì)比中,進(jìn)行了錨板最大應(yīng)力和塑性應(yīng)變、大端應(yīng)力和塑性應(yīng)變、小端軸向變形三個(gè)方面的比較,比較結(jié)果表明31孔、73孔與139孔在加載過程中力學(xué)行為相似,但在數(shù)值上73孔更接近139孔; ③在錨板局部分析對(duì)比中,選取中心孔、次邊孔、邊孔間最薄弱區(qū)域及錨板最外側(cè)為研究對(duì)象,進(jìn)行了各加載階段中應(yīng)力和塑性應(yīng)變的對(duì)比,結(jié)果表明73孔與139孔結(jié)果吻合度較高,而31孔與139孔結(jié)果有一定的差異。 以上計(jì)算分析結(jié)果表明,利用73孔鋼絞線斜拉索代替139孔鋼絞線斜拉索進(jìn)行靜載性能試驗(yàn)是可行的。 最后通過73孔鋼絞線斜拉索模型計(jì)算結(jié)果與試驗(yàn)結(jié)果的對(duì)比,驗(yàn)證了本文數(shù)值模型的正確性。
[Abstract]:Dongshuimen Bridge and Qianshuomen Bridge are called Chongqing Liangjiang Bridge, both of them are single cable plane low tower cable-stayed bridge, and the stay cable is 139 桅 15.2mm super large tonnage steel strand stay cable. The ultimate bearing capacity of single cable is 36140 KN, and the existing test equipment can not meet the static load test of such a large tonnage stay cable. In this paper, 31 holes 73 holes and 139 holes anchors with the same structure of anchor hole topology are selected as the research objects. The 31 holes are established by using the ANSYS software and the symmetry of the anchors. The 1/12 fine 3D Anchorage model of three steel strands with 73 holes and 139 holes is presented. The friction contact between the clamp and the anchor plate is considered in the model. The elastic-plastic and geometric nonlinearity of the anchor plate material. The loading mode is the same as in the static load test, the stress of the anchor plate during the loading process is analyzed, and through the 31. By comparing the stress and strain parameters of 73 and 139 hole anchors in different loading stages, the feasibility of static load performance tests with small tonnage cable cable cable instead of super tonnage cable cable is explored. In this paper, the mechanical behavior of the 139-hole cable Anchorage in the loading process is simulated, and the stress, strain and deformation of the anchor plate are analyzed through the analysis of the retractive value of the steel strand, the stress of the anchor plate and the deformation of the anchor plate. The law of distribution and development in the loading process is obtained. Then, the results of 31 holes 73 holes and 139 holes model are compared and analyzed. The main results are as follows: (1) the maximum difference rate between 73 hole and 139 hole in the comparison of retractive values of steel strand is 6.82% and 10.61% between 31 hole and 139 hole; 2 in the whole analysis and comparison of anchor plate, the maximum stress and plastic strain of anchor plate, large end stress and plastic strain and small end axial deformation are compared. The results show 31 holes. The mechanical behavior of 73 holes is similar to that of 139 holes during loading, but the numerical value of 73 holes is closer to 139 holes. 3 in the local analysis and comparison of anchor plate, the weakest area between center hole, secondary hole, edge hole and the outermost part of anchor plate are selected as the research objects, and the stress and plastic strain in each loading stage are compared. The results show that the results of 73 holes and 139 holes agree well, while the results of 31 holes and 139 holes have some difference. The results show that it is feasible to use 73 hole steel strand cable instead of 139 hole cable to carry out static load test. Finally, the correctness of the numerical model is verified by comparing the calculation results with the experimental results.
【學(xué)位授予單位】:重慶交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U448.27
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張海峰;趙愛玲;;夾片式錨具錨固過程的ANSYS/LS-DYNA模擬[J];安陽工學(xué)院學(xué)報(bào);2006年03期
2 王國(guó)玉;劉東青;;預(yù)應(yīng)力錨具的彈塑性有限元分析[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào);2005年S2期
3 紀(jì)愛敏;費(fèi)漢兵;趙軍;;環(huán)氧涂層填充型鋼絞線錨具的有限元建模與錨固性能分析[J];公路交通科技;2008年07期
4 費(fèi)漢兵;單繼安;馬偉杰;王志剛;;填充型環(huán)氧涂層鋼絞線錨具的設(shè)計(jì)與錨固性能試驗(yàn)[J];公路交通科技;2010年04期
5 陳明憲;;斜拉橋的發(fā)展與展望[J];中外公路;2006年04期
6 陶浩,段紅杰,劉建秀;預(yù)應(yīng)力錨具的強(qiáng)度性能破壞研究[J];機(jī)械設(shè)計(jì);2003年08期
7 胡龍飛;劉全坤;陳文琳;周煥林;;錨環(huán)組合三維接觸分析數(shù)值模擬與試驗(yàn)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2006年09期
8 李保軍;;夾片式錨具靜載錨固試驗(yàn)中的影響因素[J];交通世界(建養(yǎng).機(jī)械);2012年05期
9 唐小萍;平行鋼絞線拉索與平行鋼絲拉索的特性、經(jīng)濟(jì)性比較分析[J];橋梁建設(shè);1997年04期
10 孔慶華,王四玲,謝強(qiáng);夾片式單孔預(yù)應(yīng)力錨具的結(jié)構(gòu)分析[J];精密制造與自動(dòng)化;2005年03期
本文編號(hào):1430353
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1430353.html