天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 交通工程論文 >

合成地震動(dòng)場(chǎng)相關(guān)(干)性對(duì)大跨橋梁地震反應(yīng)的影響

發(fā)布時(shí)間:2018-01-11 04:13

  本文關(guān)鍵詞:合成地震動(dòng)場(chǎng)相關(guān)(干)性對(duì)大跨橋梁地震反應(yīng)的影響 出處:《哈爾濱工業(yè)大學(xué)》2014年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 合成地震動(dòng)場(chǎng) 空間相關(guān)性 相干系數(shù) 大跨橋梁 地震反應(yīng)


【摘要】:筆者導(dǎo)師課題組研究采用合成地震動(dòng)場(chǎng)作為計(jì)算大跨橋梁反應(yīng)的非一致輸入,揭示了非一致輸入與一致、行波輸入的差別,指出了研究非一致輸入的重要性。本文進(jìn)一步深入探討合成地震動(dòng)場(chǎng)中相關(guān)性、相干性不同對(duì)大跨橋梁地震反應(yīng)的影響。收集一大跨懸索橋梁的設(shè)計(jì)資料,借助ANSYS軟件建立了有限元分析模型;在收集的我國(guó)西部一活動(dòng)斷裂上發(fā)生的6.5級(jí)地震合成的地震動(dòng)場(chǎng)中,取垂直和平行破裂線的共50組地表點(diǎn)對(duì),逐一計(jì)算點(diǎn)對(duì)地震動(dòng)時(shí)程間相關(guān)、相干系數(shù),分析隨相對(duì)震源主要凹凸體位置不同的差別。選取具有代表性的若干組點(diǎn)對(duì)作為大橋的地震反應(yīng)輸入,歸納輸入地震動(dòng)相關(guān)性、相干性不同對(duì)反應(yīng)的影響。主要研究結(jié)果如下: 1.平行破裂線方向上點(diǎn)對(duì)間地震動(dòng)相關(guān)系數(shù)、相干系數(shù)隨點(diǎn)對(duì)與震源主要凹凸體的距離減小而減;隨著與主要凹凸體的距離減小,垂直破裂線方向點(diǎn)對(duì)間高頻相干系數(shù)增大、低頻相干系數(shù)減小,相關(guān)系數(shù)變化則無(wú)明顯規(guī)律。 2.平行破裂面走向的大跨橋梁地震反應(yīng),相關(guān)系數(shù)、相干系數(shù)最小的地震動(dòng)輸入下,主梁順橋向位移峰值、塔頂?shù)木礁⒅髁嚎缰屑八斕帣M橋向位移峰值、主梁跨中和1/4跨處及塔頂?shù)臋M橋向位移均方根值、主梁豎向位移均方根值、主梁軸力峰值和均方根值、塔底剪力等均會(huì)有最大值;即平行破裂面走向的橋梁布設(shè)在震源主要凹凸體處地震反應(yīng)會(huì)最大,偏于不利;但主梁彎矩峰值及主梁跨中彎矩均方根值最小或相對(duì)最小。地震動(dòng)輸入相關(guān)系數(shù)、相干系數(shù)最大,主梁順橋向位移均方根值、1/4跨處橫橋向位移峰值、主梁跨中和1/4跨處豎向位移峰值均最大。 3.垂直破裂線方向點(diǎn)對(duì)輸入橋梁計(jì)算地震反應(yīng),相干系數(shù)高頻部分高、低頻部分低的地震動(dòng)輸入下,主梁順橋向位移峰值、主梁豎向位移均方根值、塔頂順橋向位移峰值和均方根值、塔頂橫橋向位移峰值、主梁彎矩峰值和均方根值、塔底剪力峰值和均值等均會(huì)有最大值;即垂直破裂面走向的橋梁布設(shè)在震源主要凹凸體處地震反應(yīng)會(huì)最大,偏于不利。但主梁軸力峰值和均方根值最小。
[Abstract]:The author's research group used the synthetic ground motion field as the non-uniform input to calculate the long-span bridge response, and revealed the difference between the non-uniform input and the consistent, traveling wave input. The importance of studying non-uniform input is pointed out. In this paper, the effects of correlation and coherence on seismic response of long-span bridges in synthetic ground motion field are further discussed, and the design data of a long-span suspension bridge beam are collected. The finite element analysis model is established with the help of ANSYS software. In the ground motion field of a seismogenic earthquake with M = 6.5 occurring on an active fault in western China, 50 sets of ground surface point pairs of vertical and parallel rupture lines are taken to calculate the correlation between points to ground motion one by one. The coherence coefficient is analyzed with different positions of the main concave and convex bodies. Several representative pairs of points are selected as the seismic response input of the bridge and the correlation of the input ground motion is induced. The main results are as follows: 1. The correlation coefficient of ground motion between two points in the direction of parallel rupture line decreases with the distance between the point pair and the main concave and convex body of the source decreasing. With the decrease of the distance from the main concave and convex bodies, the high frequency coherence coefficient between the two pairs of vertical rupture lines increases, the low frequency coherence coefficient decreases, but the correlation coefficient changes irregularly. 2. Under the earthquake response of long-span bridge with parallel fracture plane strike, the peak displacement of the main beam along the bridge direction and the root mean square of the tower top under the input of ground motion with the smallest correlation coefficient and coherence coefficient. The peak displacement of the transverse bridge at the middle span of the main beam and the top of the tower, the root-mean-square value of the transverse bridge displacement of the main beam span and 1/4 span and the top of the tower, the root mean square value of the vertical displacement of the main beam, the peak value of axial force and the root mean square value of the main beam. The bottom shear force and so on will have the maximum value; That is to say, the bridge with parallel rupture plane will have the greatest seismic response at the main concave and convex body of the earthquake source, which will be unfavorable. However, the peak moment of the main beam and the root mean square value of the moment in the middle span of the main beam are the smallest or the least. The correlation coefficient of the ground motion input and the coherence coefficient are the largest, and the root-mean-square value of the forward bridge displacement of the main beam is equal to the peak displacement of the transverse bridge at 1 / 4 span. The peak value of vertical displacement of main beam span and 1/4 span is maximum. 3. The seismic response to the input bridge is calculated at the direction of the vertical rupture line. The vertical displacement of the main beam and the root mean square value of the vertical displacement of the main beam are calculated under the earthquake input of high frequency part with high coherence coefficient and low frequency part of the low frequency part. The peak displacement peak and root mean square value, the peak displacement peak value of tower top transverse bridge, the peak value of bending moment and root mean square value of main beam, the peak value of tower bottom shear force and the mean value of tower bottom shear will all have the maximum value. That is, the bridge with vertical fracture plane strike will have the largest seismic response at the main concave and convex body of the earthquake source, but the peak value of axial force and the root mean square value of the main beam are the smallest.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:U442.55

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 俞琦;陳語(yǔ);王家林;;橋梁抗震分析方法[J];重慶交通學(xué)院學(xué)報(bào);2006年S1期

2 林家浩;隨機(jī)地震響應(yīng)功率譜快速算法[J];地震工程與工程振動(dòng);1990年04期

3 丁海平,劉啟方,金星,袁一凡;基巖地震動(dòng)的一個(gè)相干函數(shù)模型——傾滑斷層情形[J];地震工程與工程振動(dòng);2003年02期

4 黃勇;;汶川地震中梁式橋的震害和預(yù)防震害的新方法[J];地震工程與工程振動(dòng);2008年05期

5 江洋;石永久;王元清;;實(shí)用多點(diǎn)輸入虛擬激勵(lì)法在通用有限元軟件中的實(shí)現(xiàn)[J];地震工程與工程振動(dòng);2010年01期

6 張冬麗;陶夏新;周正華;;近場(chǎng)強(qiáng)地震動(dòng)數(shù)值模擬的簡(jiǎn)化計(jì)算方法[J];地震地質(zhì);2006年04期

7 劉瑞豐,陳運(yùn)泰,周公威,涂毅敏,陳培善;地震矩張量反演在地震快速反應(yīng)中的應(yīng)用[J];地震學(xué)報(bào);1999年02期

8 ;Improvements of corner frequency and scaling factor for stochastic finite-fault modeling[J];Earthquake Engineering and Engineering Vibration;2010年04期

9 于海豐;張耀春;;地震動(dòng)輸入方法研究[J];工程力學(xué);2009年S1期

10 周國(guó)良;李小軍;劉必?zé)?亓興軍;;大質(zhì)量法在多點(diǎn)激勵(lì)分析中的應(yīng)用、誤差分析與改進(jìn)[J];工程力學(xué);2011年01期

相關(guān)博士學(xué)位論文 前1條

1 孫曉丹;強(qiáng)地震動(dòng)場(chǎng)估計(jì)中若干問(wèn)題的研究[D];哈爾濱工業(yè)大學(xué);2010年

,

本文編號(hào):1408065

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1408065.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3102f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com