城市快速路交通流特性分析
本文關(guān)鍵詞:城市快速路交通流特性分析 出處:《浙江大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 交通流參數(shù) 聚類算法 駕駛特性 車頭時(shí)距 車速離散性
【摘要】:交通流特性分析是交通流理論研究工作的重要組成部分之一。對快速路的交通運(yùn)行情況以及交通流參數(shù)變化情況進(jìn)行深入研究,總結(jié)交通流參數(shù)變化的相關(guān)規(guī)律,能夠?yàn)榭茖W(xué)控制、管理快速路及其輔路的交通流提供理論指導(dǎo)。本研究結(jié)合調(diào)查的北京市快速路交通流數(shù)據(jù),基于駕駛員行為特性對其交通流特性進(jìn)行分析研究,具體內(nèi)容如下: 1、分析調(diào)查得到的快速路交通流三參數(shù),交通量、速度、密度(由于密度比較難測量,所以本研究用時(shí)間占有率代替)各自的變化特征以及建立交通量、速度、密度三者參數(shù)的關(guān)系模型,利用FCM算法對交通流狀態(tài)進(jìn)行劃分。 2、考慮到駕駛員特點(diǎn)的不同,將駕駛員分為激進(jìn)型和謹(jǐn)慎型駕駛員。激進(jìn)型駕駛員傾向高速行駛,較少剎車,與前車保持較小的車間距。謹(jǐn)慎型駕駛員傾向低速行駛,與前車保持較大的車間距;谏鲜鲴{駛員特點(diǎn),將跟馳狀態(tài)分為強(qiáng)跟馳和弱跟馳兩種狀態(tài)。 3、在分析跟馳行為時(shí),一般從兩個(gè)方面進(jìn)行研究,一個(gè)是跟馳模型,另一個(gè)是關(guān)于跟馳狀態(tài)判定。在實(shí)際觀測交通流數(shù)據(jù)的基礎(chǔ)上,探討了不同車頭時(shí)距情況下的跟馳車輛運(yùn)行特性,根據(jù)相對速度絕對值與車頭時(shí)距之間的相關(guān)關(guān)系定量地判定車輛運(yùn)行狀態(tài),確定了跟馳狀態(tài)車頭時(shí)距臨界值。 4、利用高斯混合模型對強(qiáng)跟馳和弱跟馳的假設(shè)進(jìn)行驗(yàn)證。基于強(qiáng)、弱跟馳的現(xiàn)象特點(diǎn),提出車頭時(shí)距混合分布模型,并與其他常用車頭時(shí)距模型進(jìn)行對比。 5、利用速度的標(biāo)準(zhǔn)差、V85-V15差值以及相鄰速度差絕對值作為車速離散性的研究指標(biāo),分析車速離散性規(guī)律。
[Abstract]:The analysis of traffic flow characteristics is one of the important parts of the research work of traffic flow theory. It can provide theoretical guidance for the scientific control and management of the traffic flow on expressway and its auxiliary roads. This study combines the traffic flow data of Beijing Expressway. Based on the characteristics of driver behavior, the traffic flow characteristics are analyzed and studied. The specific contents are as follows: 1. Analyze the three parameters of expressway traffic flow, traffic volume, speed, density (because the density is difficult to measure, so this study uses time occupation rate instead), and establish the traffic volume. The FCM algorithm is used to partition the traffic flow state in the relationship model of speed and density. 2. Considering the different characteristics of drivers, the drivers are divided into radical and cautious drivers. The radical drivers tend to drive at high speed and have less brakes. The cautious driver tends to drive at low speed and maintains a large distance with the front car. Based on the above characteristics, the car-following state is divided into two states: strong car-following state and weak car-following state. 3. In the analysis of car-following behavior, there are two aspects to be studied, one is car-following model, the other is judging car-following state, which is based on the actual observation of traffic flow data. This paper discusses the running characteristics of car-following vehicles under different head-length conditions, and quantitatively determines the vehicle running status according to the correlation between the absolute value of relative velocity and the head-time distance. The critical value of the head-time distance in the car-following state is determined. 4. Gao Si mixed model is used to verify the hypothesis of strong and weak car-following. Based on the phenomenon characteristics of strong and weak car-following, the head-time mixed distribution model is proposed. The model is compared with other models. 5. Using the value of V85-V15 difference of velocity and the absolute value of adjacent velocity difference as the research index of speed discreteness, the law of speed dispersion is analyzed.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U491.112
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 達(dá)慶東 ,姜學(xué)鋒;基于流量——占有率檢測數(shù)據(jù)的交通狀態(tài)劃分[J];道路交通與安全;2002年03期
2 王建玲;蔣陽升;;交通擁擠狀態(tài)的識別與分析[J];系統(tǒng)工程;2006年10期
3 徐程;;基于高斯混合模型的車輛自由流速度分布[J];公路交通科技;2012年08期
4 孟凡興;張良;張偉;;駕駛員車頭時(shí)距研究[J];工業(yè)工程與管理;2013年02期
5 劉江,呂津燕,榮建,任福田;車頭時(shí)距分布模型及其在山區(qū)雙車道公路的應(yīng)用[J];交通運(yùn)輸工程與信息學(xué)報(bào);2004年04期
6 裴玉龍;高晗;;城市快速路匝道連接段車頭時(shí)距分布模型[J];交通與計(jì)算機(jī);2007年05期
7 王吟松;王嘉文;張建躍;董秀軍;楊曉光;;基于浮動車車速數(shù)據(jù)的交通狀態(tài)實(shí)時(shí)判別系統(tǒng)和方法[J];交通信息與安全;2011年06期
8 范九倫,裴繼紅,謝維信;模糊相關(guān)度與聚類有效性[J];西安電子科技大學(xué)學(xué)報(bào);1998年01期
9 陶鵬飛;王殿海;金盛;;車頭時(shí)距混合分布模型[J];西南交通大學(xué)學(xué)報(bào);2011年04期
10 史新宏,蔡伯根;高速公路自動事件檢測算法[J];交通運(yùn)輸系統(tǒng)工程與信息;2001年04期
,本文編號:1362741
本文鏈接:http://sikaile.net/kejilunwen/jiaotonggongchenglunwen/1362741.html