C含量對Fe-Mn-Al-C低密度鋼組織和性能的影響
發(fā)布時間:2021-07-21 02:45
采用EBSD、TEM、XRD和萬能試驗機(jī)等對比研究了4種Fe-30Mn-10Al-x C (x=0.53、0.72、1.21、1.68,質(zhì)量分?jǐn)?shù),%)低密度鋼固溶處理后的微觀組織與力學(xué)性能。結(jié)果表明,隨著C含量的增加,奧氏體的體積分?jǐn)?shù)逐漸增多,顯微結(jié)構(gòu)由鐵素體/奧氏體雙相組織逐漸演變?yōu)閱蜗鄪W氏體組織,鋼的強(qiáng)度不斷增加,而延伸率則先增加后減小。統(tǒng)計分析表明,奧氏體的應(yīng)變協(xié)調(diào)能力高于鐵素體,雙相鋼隨著奧氏體含量的增加,延展性明顯增加,強(qiáng)度略微增加;而對于單相奧氏體鋼,隨著C含量的增加,屈服強(qiáng)度明顯增加,延展性變差,加工硬化能力顯著降低,這是由于鋼中κ′碳化物的析出造成的。
【文章來源】:金屬學(xué)報. 2019,55(08)北大核心EISCICSCD
【文章頁數(shù)】:7 頁
【部分圖文】:
鐵素體含量不Coloronline圖1不同C含量實驗用鋼的EBSD圖Fig.1EBSDshowingmicrostructureoftheexperimentalsteelswithdifferentCcontents(a)0.53%C(b)0.72%C(c)1.21%C(d)1.68%C表1實驗用鋼的相含量與晶粒尺寸Table1Phasefractionandgrainsizeoftheexperimental氏體雙相組織
?慷鵲奶岣叻?卻笥誑估?強(qiáng)度,說明過高的C含量降低了鋼的應(yīng)變強(qiáng)化能力。此外,通過真應(yīng)力-應(yīng)變曲線及其對應(yīng)的加工硬化曲線(圖4b)可知,單、雙相鋼的加工硬化速率曲線表24種C含量實驗用鋼的XRD實驗數(shù)據(jù)Table2ExperimentaldataobtainedfromtheX-raydif‐fractionprofilesofthepresentfoursteelsCcontent%0.530.721.211.682θ(°)γ42.8642.7942.6942.52α44.2944.27--Latticeparameternmaγ0.3660.3660.3670.368aα0.2900.290--圖2含C量為1.68%的實驗用鋼的TEM像及選區(qū)電子衍射花樣Fig.2TEMimage(a)andcorrespondingselectedareaelectrondiffractionpattern(b)of1.68%Csteel圖3不同C含量實驗用鋼的XRD譜Fig.3XRDspectra(a)andapartialenlargedfigure(b)oftheexperimentalsteelswithdifferentCcontents954
?、?喔值募庸び不?俾是??表24種C含量實驗用鋼的XRD實驗數(shù)據(jù)Table2ExperimentaldataobtainedfromtheX-raydif‐fractionprofilesofthepresentfoursteelsCcontent%0.530.721.211.682θ(°)γ42.8642.7942.6942.52α44.2944.27--Latticeparameternmaγ0.3660.3660.3670.368aα0.2900.290--圖2含C量為1.68%的實驗用鋼的TEM像及選區(qū)電子衍射花樣Fig.2TEMimage(a)andcorrespondingselectedareaelectrondiffractionpattern(b)of1.68%Csteel圖3不同C含量實驗用鋼的XRD譜Fig.3XRDspectra(a)andapartialenlargedfigure(b)oftheexperimentalsteelswithdifferentCcontents954
本文編號:3294141
【文章來源】:金屬學(xué)報. 2019,55(08)北大核心EISCICSCD
【文章頁數(shù)】:7 頁
【部分圖文】:
鐵素體含量不Coloronline圖1不同C含量實驗用鋼的EBSD圖Fig.1EBSDshowingmicrostructureoftheexperimentalsteelswithdifferentCcontents(a)0.53%C(b)0.72%C(c)1.21%C(d)1.68%C表1實驗用鋼的相含量與晶粒尺寸Table1Phasefractionandgrainsizeoftheexperimental氏體雙相組織
?慷鵲奶岣叻?卻笥誑估?強(qiáng)度,說明過高的C含量降低了鋼的應(yīng)變強(qiáng)化能力。此外,通過真應(yīng)力-應(yīng)變曲線及其對應(yīng)的加工硬化曲線(圖4b)可知,單、雙相鋼的加工硬化速率曲線表24種C含量實驗用鋼的XRD實驗數(shù)據(jù)Table2ExperimentaldataobtainedfromtheX-raydif‐fractionprofilesofthepresentfoursteelsCcontent%0.530.721.211.682θ(°)γ42.8642.7942.6942.52α44.2944.27--Latticeparameternmaγ0.3660.3660.3670.368aα0.2900.290--圖2含C量為1.68%的實驗用鋼的TEM像及選區(qū)電子衍射花樣Fig.2TEMimage(a)andcorrespondingselectedareaelectrondiffractionpattern(b)of1.68%Csteel圖3不同C含量實驗用鋼的XRD譜Fig.3XRDspectra(a)andapartialenlargedfigure(b)oftheexperimentalsteelswithdifferentCcontents954
?、?喔值募庸び不?俾是??表24種C含量實驗用鋼的XRD實驗數(shù)據(jù)Table2ExperimentaldataobtainedfromtheX-raydif‐fractionprofilesofthepresentfoursteelsCcontent%0.530.721.211.682θ(°)γ42.8642.7942.6942.52α44.2944.27--Latticeparameternmaγ0.3660.3660.3670.368aα0.2900.290--圖2含C量為1.68%的實驗用鋼的TEM像及選區(qū)電子衍射花樣Fig.2TEMimage(a)andcorrespondingselectedareaelectrondiffractionpattern(b)of1.68%Csteel圖3不同C含量實驗用鋼的XRD譜Fig.3XRDspectra(a)andapartialenlargedfigure(b)oftheexperimentalsteelswithdifferentCcontents954
本文編號:3294141
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/3294141.html
最近更新
教材專著