AZ61鎂合金熱變形行為研究及微觀組織演化模擬
[Abstract]:With the advent of the age of light weight, the magnesium alloy is more and more popular, and has a wide application prospect in the aerospace, automobile and 3C. Due to the hexagonal crystal structure of the magnesium alloy, the plastic deformation ability is poor, so the pressure casting in the current product is more common. But the plastic deformation of the magnesium alloy is of great significance to the development and application of the magnesium alloy. The macroscopic mechanical properties of the metal are determined by the microstructure, and the microstructure evolution and the dynamic recrystallization behavior of the metal are studied by studying the microstructure evolution and the dynamic recrystallization behavior in the thermal deformation process, so that an appropriate model is established to forecast the tissue in the thermal deformation process, and the method is the most commonly used research method. Cellular Automata, as a cross-discipline, introduces the mechanism of curvature driving, the mechanism of thermodynamic driving and the mechanism of energy dissipation, and can more truly reflect the physical process of grain boundary migration, and it is a more popular one in the current simulation method. The traditional method of thermal deformation is to set up a dynamic recrystallization dynamic model and a constitutive model through the stress-strain curve, which is the basis of studying the dynamic recrystallization behavior, and can provide the basic material parameters for the simulation model. The thermal deformation behavior of the extruded and as-cast AZ61 magnesium alloy is studied by establishing a rheological stress-strain model and a dynamic recrystallization dynamic model which contain the strain parameters. The dynamic recrystallization CA model is established by introducing the grain topological deformation mechanism and the activation energy of the change. The microstructure evolution of the extruded AZ61 magnesium alloy was simulated. And a suitable heat treatment method is used for optimizing the heat treatment on the AZ61 magnesium alloy, and after the uniform tissue is obtained, the hot extrusion is carried out to obtain the extruded magnesium alloy. The stress-strain curves under different deformation conditions were obtained by the Gleeble-1500 simulation test machine, and the AZ61 magnesium alloy in the as-cast and extruded state was subjected to thermal compression experiments. In this paper, a high-temperature stress-strain model is established, and the effects of strain on the parameters, Q, n, and lnA, are studied. It is found that AZ61 magnesium alloy in different states has the same thermal deformation behavior, and the dynamic softening of the extruded magnesium alloy is more obvious. It is found that the dynamic recrystallization of the extrusion state is easy as cast, the grain size of the extruded state is small, and the recrystallization can be more easily, and the as-cast magnesium alloy can coordinate the deformation at the beginning of the deformation by generating twinning. Based on the cellular automaton principle, the initial grain growth model is established by combining the curvature driving mechanism and the energy dissipation mechanism. In this paper, the dynamic recrystallization model of the cellular automata is established in combination with the dynamic recrystallization theory, and the grain topological deformation technology is introduced, and the change of the grain shape in the deformation process is considered, and the change of the activation energy with the strain is taken into account by the introduction of the constitutive equation. The programming of the model program is accomplished by using MATLAB, and the CA simulation is carried out for the thermal deformation under different deformation conditions. The results show that the simulation results of the initial grain generation model can accurately reflect the characteristics of the grain growth process. The dynamic recrystallization CA model can accurately reproduce the influence of the deformation parameters on the dynamic recrystallization. The microstructure of the obtained microstructure and the metallographic structure obtained by the experiment are also similar, the obtained stress-strain curve and the dynamic recrystallization dynamic curve can accurately reflect the characteristics of the curve, the obtained peak stress and the steady-state stress, The average grain size and the like are in good agreement with the experimental values, so the established cellular automaton model can be used to simulate the dynamic recrystallization process of the material. The activation energy of the change is introduced, and the recrystallization behavior is influenced by the influence of the dynamic recrystallization nucleation rate, and the results show that the activation energy of the introduced change is more practical after the activation energy is introduced.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG146.22
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳飛;崔振山;董定乾;;微觀組織演變元胞自動(dòng)機(jī)模擬研究進(jìn)展[J];機(jī)械工程學(xué)報(bào);2015年04期
2 徐巖;胡連喜;孫宇;;鑄態(tài)AZ91D鎂合金的動(dòng)態(tài)再結(jié)晶動(dòng)力學(xué)(英文)[J];Transactions of Nonferrous Metals Society of China;2014年06期
3 李慧中;衛(wèi)曉燕;歐陽杰;姜俊;李軼;;擠壓態(tài)AZ80鎂合金的熱變形行為(英文)[J];Transactions of Nonferrous Metals Society of China;2013年11期
4 熊光耀;余夢;麻春英;趙龍志;;激光合金化中SiC顆粒對鎂合金熱影響區(qū)晶粒生長的CA模擬研究[J];功能材料;2013年01期
5 姜巨福;林鑫;王迎;曲建俊;羅守靖;;等徑道角擠壓預(yù)變形AZ61鎂合金在半固態(tài)等溫處理中的微觀組織演變(英文)[J];Transactions of Nonferrous Metals Society of China;2012年03期
6 朱亞哲;李保成;張治民;;鎂合金的特點(diǎn)及其塑性加工技術(shù)研究進(jìn)展[J];熱加工工藝;2012年01期
7 高英俊;羅志榮;胡項(xiàng)英;黃創(chuàng)高;;相場方法模擬AZ31鎂合金的靜態(tài)再結(jié)晶過程[J];金屬學(xué)報(bào);2010年10期
8 崔振山;陳文;陳飛;張效迅;;大鍛件控性鍛造過程的計(jì)算機(jī)模擬技術(shù)[J];機(jī)械工程學(xué)報(bào);2010年11期
9 黃始全;易幼平;劉超;;Simulation of dynamic recrystallization for aluminium alloy 7050 using cellular automaton[J];Journal of Central South University of Technology;2009年01期
10 段亞利;張治民;薛勇;;鎂合金的應(yīng)用及其塑性成形技術(shù)[J];湖南有色金屬;2007年01期
相關(guān)博士學(xué)位論文 前7條
1 郭一娜;金屬環(huán)件鑄輾復(fù)合成形過程微觀組織演變的元胞自動(dòng)機(jī)模擬[D];太原科技大學(xué);2014年
2 季海鵬;基于元胞自動(dòng)機(jī)法的316LN不銹鋼動(dòng)態(tài)再結(jié)晶組織預(yù)測[D];燕山大學(xué);2013年
3 甘國強(qiáng);TA15合金形變—相變耦合過程的介觀模擬計(jì)算[D];合肥工業(yè)大學(xué);2013年
4 禹寶軍;二相粒子材料動(dòng)態(tài)再結(jié)晶行為的元胞自動(dòng)機(jī)模型及其模擬研究[D];山東大學(xué);2012年
5 陳飛;熱鍛非連續(xù)變形過程微觀組織演變的元胞自動(dòng)機(jī)模擬[D];上海交通大學(xué);2012年
6 周佳;Mg-Al-Ca-Sr鎂合金熱擠壓組織演變及表面開裂仿真研究[D];湖南大學(xué);2012年
7 丁漢林;AZ91鎂合金高溫變形行為的實(shí)驗(yàn)研究與數(shù)值模擬[D];上海交通大學(xué);2007年
相關(guān)碩士學(xué)位論文 前4條
1 祝培培;基于元胞自動(dòng)機(jī)法的Ti-55高溫鈦合金熱變形過程組織模擬[D];哈爾濱工業(yè)大學(xué);2016年
2 余新平;TC21鈦合金熱變形及熱處理微觀組織演變研究[D];南昌航空大學(xué);2015年
3 王賓;基于元胞自動(dòng)機(jī)法的7050鋁合金熱壓縮組織演變建模研究[D];重慶大學(xué);2014年
4 何東;晶粒組織演化的元胞自動(dòng)機(jī)模擬[D];哈爾濱工業(yè)大學(xué);2007年
,本文編號:2504332
本文鏈接:http://sikaile.net/kejilunwen/jiagonggongyi/2504332.html